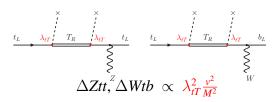
Multi-lepton signals from non-sequential quarks and leptons

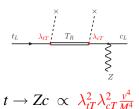
J. A. Aguilar-Saavedra

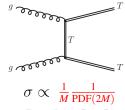
Departamento de Física Teórica y del Cosmos Universidad de Granada and LIP

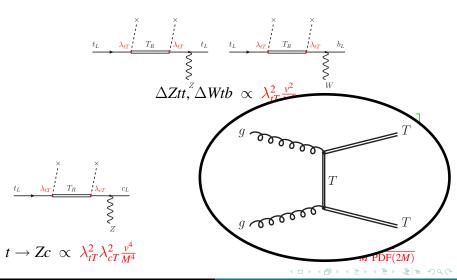
Lisbon, March 25th 2010

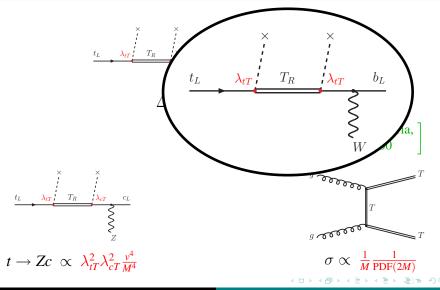


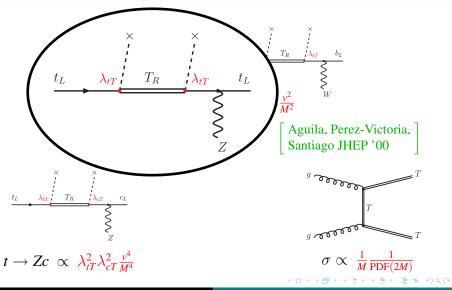
- 1 Introduction: why and what
- 2 Models of new quarks and their signals
- 3 Seesaw and other models for new leptons

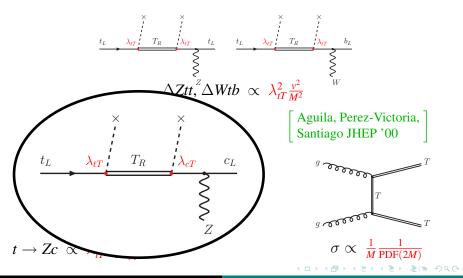

Motivation

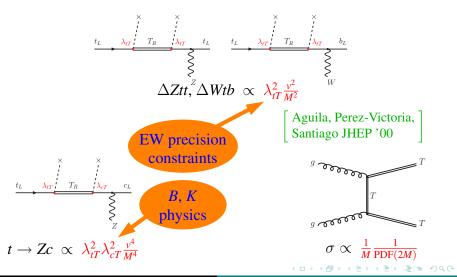

Despite the tremendous (recent) popularity of 4th generation...

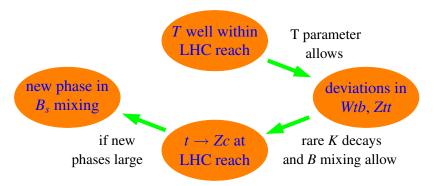

- There are other possibilities for new fermions
- Alternative models give even more striking signals at LHC
- They can also explain discrepancies in B physics
- Let experiments decide!




Aguila, Perez-Victoria, Santiago JHEP '00







PDF suppression is stronger in principle, but ...

- λ_{tT} constrained by precision data
- λ_{cT} tightly constrained by low energy physics

... then, dominant effect depends on the type of new physics

E.g. vector-like singlet T [JAAS, Botella, Branco, Nebot NPB '05]

phase in B_s mixing $(a_{J/\psi\phi})$ encourages search for other effects

if T not seen at LHC, forget everything else ...

Why multi-leptons?

- 1 Beyond new physics discovery: Model discrimination
 - Jet multiplicity \neq parton multiplicity
 - On the other hand, charged leptons (e, μ) are clean objects
 - Most convenient signal classification: lepton multiplicity
 - Leptons leading role in model discrimination
 - Further classification: # of Z candidates, b jets
- ② Multi-lepton signals may provide early discoveries
 - Smaller backgrounds
 - Need less detector calibration

Why multi-leptons?

- 3 Multi-leptons originate from cascade decays in most NP models
 - MSSM
 - Minimal seesaw I, II, III
 - Heavy leptons (seesaw or not)
 - Heavy quarks
 - ...

What is in this talk

- 1 Pair production of heavy quarks coupling to 3rd family
- 2 Pair production of heavy leptons with special attention to seesaw

What is not in this talk

- Minimal seesaw I → small signals
- Seesaw II not fermions; clear identification
- ③ W' + N \longrightarrow easy discrimination from other models with new leptons
- 4th generation → easy discrimination from models with vector-like quarks

Models with new quarks

New quarks coupling to 3^{rd} family can appear in many SM extensions and many $SU(2)_L \times U(1)_Y$ representations:

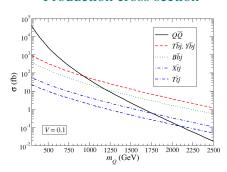
• vector-like singlets and doublets

$$T_{L,R}$$
 $B_{L,R}$ $(T B)_{L,R}$ $(X T)_{L,R}$ $(B Y)_{L,R}$

- chiral (4th family)
- higher representations (triplets)

The discrimination among these possibilities is very easy at the Lagrangian level but Lagrangians are <u>not</u> directly observed at LHC

Models with new quarks


Models			
multiplet	charges	coupling to	label
$\overline{T_{L,R}}$	2/3	t, b	T_{s}
$B_{L,R}$	-1/3	t, b	$B_{ m s}$
$(T B)_{L,R}$	2/3, -1/3	t, b	TB_{d_1}
$(T B)_{L,R}$	2/3, -1/3	t	$TB_{ m d_2}$
$(X T)_{L,R}$	5/3, 2/3	t	$XT_{\rm d}$
$(B Y)_{L,R}$	-1/3, -4/3	b	BY_{d}

They appear in extra dimensions, little Higgs, ...

Heavy vector-like quark production

Production cross section

Processes

- Pair production (QCD) only depends on mass
- Single production (EW) $\sigma \propto V^2$

Heavy vector-like quark decays

$T_{\rm s}$, $TB_{\rm d_1}$

$$T \rightarrow W^+ b$$

$$T \rightarrow Zt \rightarrow ZW^+b$$

$$T \to Ht \to HW^+b$$

$BY_{\rm d}$

$$Y \rightarrow W^- b$$

TB_{d_2} , XT_{d}

$$T \to Zt \to ZW^+b$$

$$T \rightarrow Ht \rightarrow HW^+b$$

$BY_{\rm d}$

$$B \rightarrow Zh$$

$$B \rightarrow Hb$$

TB_{d_2}

$$B \rightarrow W^- t \rightarrow W^- W^+ b$$

$XT_{\rm d}$

$$X \rightarrow W^+ t \rightarrow W^+ W^+ b$$

$$B_{\rm s}$$
 , $TB_{\rm d_1}$

$$B \rightarrow W^- t \rightarrow W^- W^+ b$$

$$B \rightarrow Zb$$

$$B \rightarrow Hb$$

Heavy quark identification

Important comments

- 1 All quarks produced by QCD, distinguished by decays single production $\propto V_{\rm mix}^2$ ignored here
- ② Each decay must be identified in a suitable final state and distinguished from similar signals from other quarks
- Quark charges determined in suitable decays (e.g. with Z bosons)
- 4 12 different final states tested for model discrimination only two examples shown here

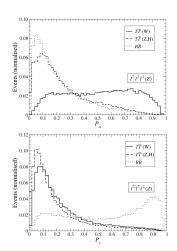
Quark identification

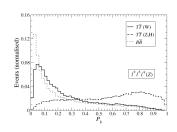
Each decay must be identified in a suitable final state and distinguished from similar signals from other quarks

Example: T, B singlets and (T B) doublet in $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ (Z) final state

$$T\bar{T} \rightarrow Zt W^-\bar{b} \rightarrow ZW^+bW^-\bar{b}$$
 $Z \rightarrow \ell^+\ell^-, WW \rightarrow \ell\nu q\bar{q}'$

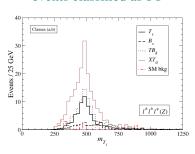
$$T\bar{T} \to Zt V\bar{t} \to ZW^+b VW^-\bar{b}$$
 $Z \to \ell^+\ell^-, WW \to \ell\nu q\bar{q}', V \to q\bar{q}/\nu\bar{\nu}$

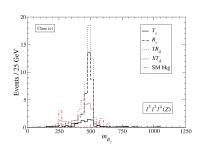

$$B\bar{B} \to Zb \ W^+ \bar{t} \to Zb \ W^+ W^- \bar{b}$$
 $Z \to \ell^+ \ell^-, WW \to \ell \nu q \bar{q}'$


(almost) same final state but different invariant mass peaks

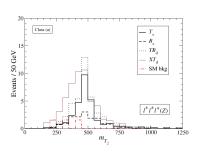
must use a probabilistic method based on kinematics to classify signals as $T\bar{T}$ or $B\bar{B}$ efficiently \bigcirc More

(the same for $\ell^+\ell^-$ (Z) final state, with $WW \to q\bar{q}'q\bar{q}'$)

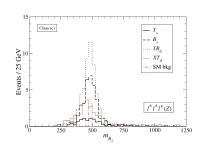



Classification					
Class	$P_a >$	$P_b >$	$P_c >$		
$\overline{}$	0.61	0.24	0.15		
(<i>b</i>)	0.19	0.69	0.12		
(c)	0.15	0.20	0.65		

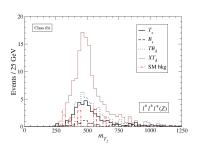
events classified as $T\bar{T}$


 $T \rightarrow Zt$ established T has charge 2/3

events classified as $B\bar{B}$


 $B \rightarrow Zb$ established B has charge -1/3

events classified as $T\bar{T}(a)$


 $T \rightarrow Wb$ established but better in ℓ^{\pm} (2b)

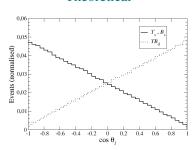
events classified as $B\bar{B}$

 $B \rightarrow Wt$ established not (B Y)

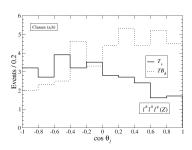
events classified as $T\bar{T}(b)$

 $T \rightarrow Vt$ ambiguous: need other channels

events classified as $B\bar{B}$


 $B \rightarrow Wt$ established not (B Y)

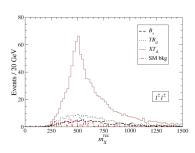
T, B or (T B)?


 ℓ distribution in t rest frame

Theoretical

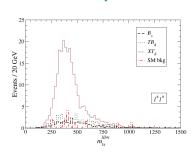
 $P = \pm 0.91$, helicity axis

events classified as $T\bar{T}$



 2.4σ difference in $A_{\rm FB}$ for 30 fb⁻¹

X quark identification



 $X \rightarrow Wt \rightarrow WWb$ WW hadronic

X charge -1/3, 5/3

$X \rightarrow Wt \rightarrow WWb$ WW leptonic

 \bar{X} charge -5/3, -7/3

Comparison: multi-lepton signals from heavy quarks

Discovery luminosities in fb ⁻¹				$m_Q = 500 \text{ GeV}$			
		T_{s}	$B_{\rm s}$	TB_{d_1}	TB_{d_2}	$XT_{\rm d}$	$BY_{\rm d}$
$\ell^+\ell^+\ell^-\ell^-$	(ZZ)	_	24	18	23	23	10
$\ell^+\ell^+\ell^-\ell^-$	(Z)	11	14	5.7	3.4	3.3	50
$\ell^+\ell^+\ell^-\ell^-$	(no Z)	35	25	11	3.3	3.5	_
$\ell^{\pm}\ell^{\pm}\ell^{\mp}$	(Z)	3.4	3.4	1.1	0.73	0.72	26
$\ell^{\pm}\ell^{\pm}\ell^{\mp}$	(no Z)	11	3.5	1.1	0.25	0.25	_
$\ell^{\pm}\ell^{\pm}$		17	4.1	1.5	0.23	0.23	_
$\ell^+\ell^-$	(Z)	22	4.5	2.4	4.4	4.4	1.8
$\ell^+\ell^-$	(Z, 4b)	_	_	30	_	_	9.2
$\ell^+\ell^-$	(no Z)	2.7	9.3	0.83	1.1	1.1	0.87
ℓ^\pm	(2b)	1.1	_	0.60	_	_	0.18
ℓ^\pm	(4 <i>b</i>)	0.70	1.9	0.25	0.16	0.16	6.2
ℓ^\pm	(6 <i>b</i>)	11	-	9.4	2.7	2.7	_
Fast simulation results [JAAS JH				EP '09]			

Summary: roadmap to quark identification

- ★ T singlet; $T \in (T B)_1$
 - discovered in ℓ^{\pm} (4b)
 - identified in ℓ^{\pm} (2b) and $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ (Z)
- ★ $T \in (T B)_2; T \in (X T)$
 - discovered in ℓ^{\pm} (4b), enhanced signal
 - no signal in ℓ^{\pm} (2b)
 - enhanced signal in $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ (Z)
- $\star X \in (X T)$
 - discovered in $\ell^{\pm}\ell^{\pm}$ and $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ (no Z)
 - also visible in $\ell^+\ell^+\ell^-\ell^-$ (no Z)

Summary: roadmap to quark identification

- ★ B singlet; $B \in (T B)_1$
 - discovered in ℓ^{\pm} (4b)
 - identified in $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ (*Z*)
 - further evidence from $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ (no *Z*)
- $\star B \in (T B)_2$
 - discovered in $\ell^{\pm}\ell^{\pm}$ and $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ (no Z)
 - identified in $\ell^+\ell^-$ (no Z)
- $\star B \in (B Y)$
 - discovered in $\ell^+\ell^-$ (Z), enhanced signal
 - does not give $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ (Z, no Z)
 - enhanced $\ell^+\ell^+\ell^-\ell^-$ (ZZ)

Summary: roadmap to quark identification

```
\star Y \in (B Y)
```

- discovered in ℓ^{\pm} (2b), enhanced signal
- further evidence from enhanced $\ell^+\ell^-$ (no Z)
- signals with Z absent

Motivation for heavy leptons

SM neutrinos are massive

Three types of seesaw mechanism $\begin{bmatrix} \textcircled{1} & \text{heavy neutrino singlets } N \\ \textcircled{2} & \text{a scalar triplet } \Delta \\ \textcircled{3} & \text{fermion triplets } \Sigma \\ \end{bmatrix}$

can yield an effective Majorana mass term for light neutrinos

$$(O_5)_{ij} = rac{1}{\Lambda} \overline{L^c_{iL}} ilde{\phi}^* ilde{\phi}^\dagger L_{jL}$$

upon integration of heavy fields N, Δ or Σ

Seesaw most popular, but alternative mechanisms also possible...

Motivation for heavy leptons at LHC

Large colliders offer the best hope to probe the neutrino mass origin

- $\beta\beta0\nu$ cannot reveal mechanism for ν mass generation
- If $\Lambda \sim \nu$, seesaw messengers N, Δ , Σ could be directly produced at colliders and indirect effects could be seen in dim 6 operators
- If $\Lambda \gg \nu$, indirect effects of seesaw not observed either
- ... and LHC startup is near

A new paradigm for seesaw at LHC

New paradigm: multi-leptons for seesaw

Not all seesaw models involve heavy Majorana states

in fact, heavy Dirac states at the TeV scale are often regarded as more natural [Kersten, Smirnov PRD '07]

popular like-sign dileptons are <u>just</u> a piece in the global puzzle

Signals with 2, 3 and 4 leptons discriminate among several models

trilepton signals are <u>always</u> produced and in most cases have the highest statistical significance

Trileptons: the golden channel for seesaw at LHC

Some models with new leptons

Heavy leptons (seesaw messengers) can couple to e, μ, τ in general Assume they mainly couple to e, μ

Models					
	multiplet	particles	D/M	label	
•	N_R	N	M	$Z'N_{ m M}$	
	N_{1R} , N_{2R}	N	D	$Z'N_{ m D}$	
	Σ_R	E^-, N	M	$\Sigma_{\mathbf{M}}$	
	Σ_{1R}, Σ_{2R}	E_1^-, N, E_2^+	D	$\Sigma_{ m D}$	
	$(N E)_{L,R}$	E^-, N	D	$NE_{\rm d}$	
	$E_{L,R}$	E^-	_	$E_{\rm s}$	

Minimal seesaw III

The Lagrangian

Triplets Σ_i contain a charged lepton E_i^- and a Majorana N_i

They have Yukawa interactions with SM leptons

$$-Y_{ij}\,\bar{L}'_{iL}(\vec{\Sigma}_j\cdot\vec{\tau})\,\tilde{\phi} \quad \stackrel{\langle\phi^0\rangle=\nu/\sqrt{2}}{\longrightarrow} \quad -\frac{\nu}{\sqrt{2}}Y_{ij}\,\bar{\nu}'_{iL}\,N'_{jR}$$

and a Majorana mass term

$$-\frac{1}{2} M_{ij} \overline{\vec{\Sigma}_{i}^{c}} \cdot \vec{\Sigma}_{j} \longrightarrow -\frac{1}{2} M_{ij} \overline{N_{iR}^{\prime c}} N_{jR}^{\prime}$$

E, N have small mixing $\sim 10^{-6}$ with the SM leptons l, ν but unsuppressed gauge interactions with W, Z, γ

Dirac variant of seesaw III

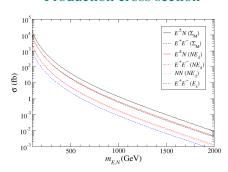
The Lagrangian

Alternative: degenerate triplets Σ_1 , Σ_2 form (quasi-)Dirac triplet and lepton number is (approximately) conserved

two (quasi-)degenerate neutrinos N_1 , N_2 with $Y_{lN_2} = iY_{lN_1}$ opposite CP parities

$$\left\{ \begin{array}{c} N_{1R}, N_{2R} \end{array} \right\} \longrightarrow N_L \equiv \frac{1}{\sqrt{2}} (N_{1R}^c + iN_{2R}^c) \quad N_R \equiv \frac{1}{\sqrt{2}} (N_{1R} + iN_{2R})$$

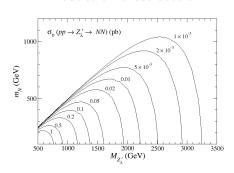
$$\left\{ \begin{array}{c} E_{1L}, E_{1R} \\ E_{2L}, E_{2R} \end{array} \right\} \longrightarrow E_{1L}^- \equiv \frac{1}{\sqrt{2}} (E_{1L} + iE_{2L}) \quad E_{1R}^- \equiv \frac{1}{\sqrt{2}} (E_{1R} + iE_{2R})$$


$$E_{2L}^+ \equiv \frac{1}{\sqrt{2}} (E_{1R}^c + iE_{2R}^c) \quad E_{2R}^+ \equiv \frac{1}{\sqrt{2}} (E_{1L}^c + iE_{2L}^c)$$

N neutral; E_1^- and E_2^+ charged Dirac fermions

Heavy lepton pair production

Production cross section



Processes

- $q\bar{q}' \rightarrow W^* \rightarrow EN$
- $q\bar{q} \rightarrow Z^*/\gamma^* \rightarrow E^+E^-$
- $q\bar{q} \rightarrow Z' \rightarrow NN$ (if Z' with $M_{Z'} > 2m_N$)

Heavy lepton pair production

Production cross section

Processes

- $q\bar{q}' \rightarrow W^* \rightarrow EN$
- $q\bar{q} \rightarrow Z^*/\gamma^* \rightarrow E^+E^-$
- $q\bar{q} \rightarrow Z' \rightarrow NN$ (if Z' with $M_{Z'} > 2m_N$)

Heavy lepton decays

$N_{\rm M}$, $\Sigma_{\rm M}$

$$N \rightarrow W^+ \ell^-$$

$$N \rightarrow W^- \ell^+$$

$$N \rightarrow Z\nu$$

$$N \to H \nu$$

$NE_{\rm d}$

$$N \rightarrow W^+ \ell^-$$

Σ_{M}

$$E^- o W^-
u$$

$$E^- \rightarrow Z \ell^-$$

$$E^- \to H \ell^-$$

$NE_{\rm d}$

$$E^- \rightarrow Z\ell^-$$

$$E^- \to H\ell^-$$

$N_{\rm D}$, $\Sigma_{\rm D}$

$$N \rightarrow W^+ \ell^-$$

$$N \to Z\nu$$

$$N \rightarrow H\nu$$

$\Sigma_{ m D}$

$$E_1^- \rightarrow Z\ell^-$$

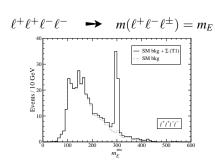
$$E_1^- \to H\ell^-$$

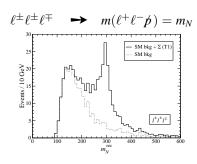
$$E_2^+ \to W^+ \nu$$

Model discrimination

Important comments

- 1 Several decay channels contribute to each final state:

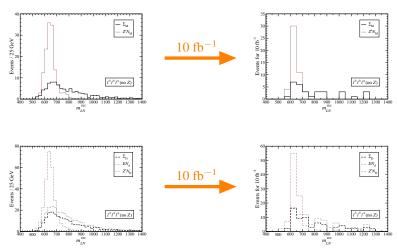

 Complete signal generation crucial Triada
- 2 Different final states tested model discrimination
- ③ For discovery potential and model discrimination $e = \mu$ sum e, μ in signals and backgrounds
- Analyses quite generic, small cut optimisation
 adequate for model-independent NP searches
- **(5)** After discovery, separate $N \rightarrow eW, \mu W, \tau W$ and combine with neutrino oscillation data



Comparison: multi-lepton signals from heavy leptons

Discovery luminosities in fb ⁻¹			$m_L = 300 \text{ GeV } M_{Z'_\lambda} = 650 \text{ GeV}$						
		$\Sigma_{\mathbf{M}}$	$\Sigma_{ m D}$	NE_{d}	$Z'N_{ m M}$	$Z'N_{ m D}$			
$\ell^+\ell^+\ell^-\ell^-$	(no Z)	6.6	1.8	3.0	_	_			
$\ell^{\pm}\ell^{\pm}\ell^{\mp}$	(Z)	25	17	_	_	_			
$\ell^{\pm}\ell^{\pm}\ell^{\mp}$	(no Z)	3.3	1.5	1.1	2.1	1.1			
$\ell^{\pm}\ell^{\pm}$	$(no p_t)$	2.1	_	_	2.3	_			
$\ell^{\pm}\ell^{\pm}$	(p_t)	3.5	1.8	-	13	22			
→ Easy model discrimination!									
Fast simulation results				[JAAS NPB '09]					

Synergy between channels for *E*, *N* discovery



 $\ell^+\ell^+\ell^-\ell^ \Longrightarrow$ Evidence of E production (resonance with charge ± 1)

 $\ell^{\pm}\ell^{\pm}\ell^{\mp}$ \rightarrow Evidence of N production (resonance with charge 0)

 $\ell^{\pm}\ell^{\pm}$ \longrightarrow N is Majorana (signal) or Dirac (no signal)

Z' mass reconstruction $(\ell^{\pm}\ell^{\pm}\ell^{\mp})$

Summary

- ★ Strategy designed for discovery of seesaw messengers and model discrimination
- ★ Trilepton signals are the golden mode for seesaw searches but model identification relies on other multi-lepton signals
- ★ In particular, heavy lepton peaks can be identified in trilepton and four lepton final states

Final remarks

- ① Discovering event excesses at LHC is not enough: we want to identify the new physics giving the signals
- 2 Identifying a model is much harder than discovering a signal in one's favourite channel
- 3 With LHC start approaching, a strategy is necessary to extract the best of data as soon as possible
 - a guide to identify particles
 - a list of their possible signatures
 - a guide of final states to examine if some signal is seen
- The usefulness of this analysis is to provide such guide for new quarks and leptons

Final remarks

- (5) The Monte Carlo Protos generates all these signals and more, interface with Athena ready
- 6 Approximate mass reach for 100 fb⁻¹
 - 800 GeV for T
 - 720 GeV for B
 - 850 GeV for $(T B)_1$
 - 900 GeV for $(T B)_2$, (X T)
 - 820 GeV for (B Y)
 - 675 (800) GeV for $\Sigma_{\rm M}$ ($\Sigma_{\rm D}$)
 - 850 GeV for (*N E*)
 - 850 GeV (1 TeV) for $Z'N_{\rm M}$ ($Z'N_{\rm D}$)
 - 700 GeV (900 GeV) for Δ NH (IH)

ADDITIONAL SLIDES

T singlet

The Lagrangian – weak basis

$$\begin{split} \mathcal{L}_W &= -\frac{g}{\sqrt{2}} \, \bar{u}'_{Li} \gamma^\mu d'_{Li} \, W^+_\mu + \text{H.c.} \\ \mathcal{L}_Z &= -\frac{g}{2c_W} \left[\bar{u}'_{Li} \gamma^\mu u'_{Li} - 2 s_W^2 J_{\text{EM}}^\mu \right] Z_\mu \\ \mathcal{L}_Y &= -Y^\mu_{i\beta} \, \bar{q}'_{Li} u'_{R\beta} \, \tilde{\phi} + \text{H.c.} \\ \mathcal{L}_{\text{bare}} &= -M \bar{u}'_{Li} u'_{RA} + \text{H.c.} \end{split}$$

T singlet

The Lagrangian – mass eigenstate basis

$$\begin{split} \mathcal{L}_W &= -\frac{g}{\sqrt{2}} \, \bar{u}_{L\alpha} \gamma^\mu V_{\alpha j} d_{Lj} \, W_\mu^+ + \text{H.c.} \\ \mathcal{L}_Z &= -\frac{g}{2c_W} \left[\bar{u}_{L\alpha} \gamma^\mu X_{\alpha\beta} u_{L\beta} - 2 s_W^2 J_{\text{EM}}^\mu \right] Z_\mu \\ \mathcal{L}_H &= -\frac{g}{2M_W} \left[\bar{u}_{L\alpha} X_{\alpha\beta} \, m_\beta^u u_{R\beta} + \bar{u}_{R\alpha} m_\alpha^u X_{\alpha\beta} u_{L\beta} \right] H \end{split}$$

The Lagrangian – weak basis

$$\begin{split} \mathcal{L}_W &= -\frac{g}{\sqrt{2}} \, \bar{u}'_{Li} \gamma^\mu d'_{Li} \, W^+_\mu + \text{H.c.} \\ \mathcal{L}_Z &= -\frac{g}{2c_W} \left[-\bar{d}'_{Li} \gamma^\mu d'_{Li} - 2 s_W^2 J_{\text{EM}}^\mu \right] Z_\mu \\ \mathcal{L}_Y &= -Y^d_{i\beta} \, \bar{q}'_{Li} d'_{R\beta} \, \phi + \text{H.c.} \\ \mathcal{L}_{\text{bare}} &= -M \bar{d}'_{LA} d'_{RA} + \text{H.c.} \end{split}$$

The Lagrangian – mass eigenstate basis

$$\begin{split} \mathcal{L}_W &= -\frac{g}{\sqrt{2}} \, \bar{u}_{Li} \gamma^\mu \mathrm{V}_{i\beta} d_{L\beta} \, W_\mu^+ + \mathrm{H.c.} \\ \mathcal{L}_Z &= -\frac{g}{2c_W} \left[-\bar{d}_{L\alpha} \gamma^\mu \mathrm{X}_{\alpha\beta} d_{L\beta} - 2 s_W^2 J_{\mathrm{EM}}^\mu \right] Z_\mu \\ \mathcal{L}_H &= -\frac{g}{2M_W} \left[\bar{d}_{L\alpha} \mathrm{X}_{\alpha\beta} \, m_\beta^d d_{R\beta} + \bar{d}_{R\alpha} m_\alpha^d \mathrm{X}_{\alpha\beta} d_{L\beta} \right] H \end{split}$$

(T B) doublet

The Lagrangian – weak basis

$$\begin{split} \mathcal{L}_{W} &= -\frac{g}{\sqrt{2}} \left[\bar{u}'_{L\alpha} \gamma^{\mu} d'_{L\alpha} + \bar{u}'_{R4} \gamma^{\mu} d'_{R4} \right] W^{+}_{\mu} + \text{H.c.} \\ \mathcal{L}_{Z} &= -\frac{g}{2c_{W}} \left[\bar{u}'_{L\alpha} \gamma^{\mu} u'_{L\alpha} + \bar{u}'_{R4} \gamma^{\mu} u'_{R4} - \bar{d}'_{L\alpha} \gamma^{\mu} d'_{L\alpha} - \bar{d}'_{R4} \gamma^{\mu} d'_{R4} \right. \\ & \left. -2s_{W}^{2} J^{\mu}_{\text{EM}} \right] Z_{\mu} \\ \mathcal{L}_{Y} &= -Y^{u}_{\alpha j} \; \bar{q}'_{L\alpha} u'_{Rj} \; \tilde{\phi} - Y^{d}_{\alpha j} \; \bar{q}'_{L\alpha} d'_{Rj} \; \phi + \text{H.c.} \\ \mathcal{L}_{\text{bare}} &= -M \bar{q}'_{L4} q'_{R4} + \text{H.c.} \end{split}$$

(T B) doublet

The Lagrangian – mass eigenstate basis

$$\begin{split} \mathcal{L}_W &= -\frac{g}{\sqrt{2}} \left[\bar{u}_{Li} \gamma^\mu V^L_{ij} d_{Lj} + \bar{T}_L \gamma^\mu B_L + \bar{u}_{R\alpha} \gamma^\mu V^R_{\alpha\beta} d_{R\beta} \right] W^+_\mu + \text{H.c.} \\ \mathcal{L}_Z &= -\frac{g}{2c_W} \left[\bar{u}_{L\alpha} \gamma^\mu u_{L\alpha} + \bar{u}_{R\alpha} \gamma^\mu X^u_{\alpha\beta} u_{R\beta} \right. \\ & \left. - \bar{d}_{L\alpha} \gamma^\mu d_{L\alpha} - \bar{d}_{R\alpha} \gamma^\mu X^d_{\alpha\beta} d_{R\beta} - 2s_W^2 J^\mu_{\text{EM}} \right] Z_\mu \\ \mathcal{L}_H &= -\frac{g}{2M_W} \left[\bar{u}_{L\alpha} m^u_\alpha (\delta_{\alpha\beta} - X^u_{\alpha\beta}) u_{R\beta} + \bar{u}_{R\alpha} (\delta_{\alpha\beta} - X^u_{\alpha\beta}) m^u_\beta u_{L\beta} \right. \\ & \left. + \bar{d}_{L\alpha} m^d_\alpha (\delta_{\alpha\beta} - X^d_{\alpha\beta}) d_{R\beta} + \bar{d}_{R\alpha} (\delta_{\alpha\beta} - X^d_{\alpha\beta}) m^d_\beta d_{L\beta} \right] H \end{split}$$

(X T) doublet

The Lagrangian – weak basis

$$\begin{split} \mathcal{L}_{W} &= -\frac{g}{\sqrt{2}} \left[\bar{u}'_{Li} \gamma^{\mu} d'_{Li} + \bar{X}_{L} \gamma^{\mu} u'_{L4} + \bar{X}_{R} \gamma^{\mu} u'_{R4} \right] W_{\mu}^{+} + \text{H.c.} \\ \mathcal{L}_{Z} &= -\frac{g}{2c_{W}} \left[\bar{u}'_{Li} \gamma^{\mu} u'_{Li} - \bar{u}'_{L4} \gamma^{\mu} u'_{L4} - \bar{u}'_{R4} \gamma^{\mu} u'_{R4} + \bar{X} \gamma^{\mu} X - 2s_{W}^{2} J_{\text{EM}}^{\mu} \right] Z_{\mu} \\ \mathcal{L}_{Y} &= -Y_{ij}^{u} \; \bar{q}'_{Li} u'_{Rj} \; \tilde{\phi} - Y_{4j}^{u} \; (\bar{X}_{L} \; \bar{u}'_{L4}) \; u'_{Rj} \; \phi + \text{H.c.} \\ \mathcal{L}_{\text{bare}} &= -M \; (\bar{X}_{L} \; \bar{u}'_{L4}) \; \binom{X_{R}}{u'_{R4}} \; + \text{H.c.} \end{split}$$

(X T) doublet

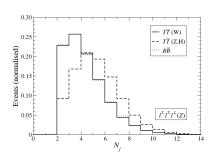
The Lagrangian – mass eigenstate basis

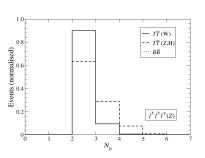
$$\begin{split} \mathcal{L}_W &= -\frac{g}{\sqrt{2}} \left[\bar{u}_{Li} \gamma^\mu \mathsf{V}^L_{ij} d_{Lj} + \bar{X}_L \gamma^\mu T_L + \bar{X}_R \gamma^\mu \mathsf{V}^R_{4\beta} u_{R\beta} \right] W^+_\mu + \text{H.c.} \\ \mathcal{L}_Z &= -\frac{g}{2c_W} \left[\bar{u}_{Li} \gamma^\mu u_{Li} - \bar{T}_L \gamma^\mu T_L - \bar{u}_{R\alpha} \gamma^\mu \mathsf{X}_{\alpha\beta} u_{R\beta} + \bar{X} \gamma^\mu \mathsf{X} \right. \\ &\left. -2s_W^2 J_{\rm EM}^\mu \right] Z_\mu \\ \mathcal{L}_H &= -\frac{g}{2M_W} \left[\bar{u}_{L\alpha} m_\alpha^u (\delta_{\alpha\beta} - \mathsf{X}_{\alpha\beta}) u_{R\beta} + \bar{u}_{R\alpha} (\delta_{\alpha\beta} - \mathsf{X}_{\alpha\beta}) m_\beta^u u_{L\beta} \right] H \end{split}$$

(B Y) doublet

The Lagrangian – weak basis

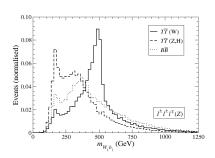
$$\begin{split} \mathcal{L}_W &= -\frac{g}{\sqrt{2}} \left[\bar{u}'_{Li} \gamma^\mu d'_{Li} + \bar{d}'_{L4} \gamma^\mu Y_L + \bar{d}'_{R4} \gamma^\mu Y_R \right] W^+_\mu + \text{H.c.} \\ \mathcal{L}_Z &= -\frac{g}{2c_W} \left[-\bar{d}'_{Li} \gamma^\mu d'_{Li} + \bar{d}'_{L4} \gamma^\mu d'_{L4} + \bar{d}'_{R4} \gamma^\mu d'_{R4} - \bar{Y} \gamma^\mu Y \right. \\ & \left. -2s_W^2 J^\mu_{\text{EM}} \right] Z_\mu \\ \mathcal{L}_Y &= -Y^d_{ij} \; \bar{q}'_{Li} d'_{Rj} \; \phi - Y^d_{4j} \; \bar{(}\bar{d}'_{L4} \; \bar{Y}_L) \, d'_{Rj} \; \tilde{\phi} + \text{H.c.} \\ \mathcal{L}_{\text{bare}} &= -M \; (\bar{d}'_{L4} \; \bar{Y}_L) \left(\begin{array}{c} d'_{R4} \\ X_R \end{array} \right) + \text{H.c.} \end{split}$$


(B Y) doublet

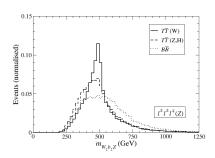

The Lagrangian – mass eigenstate basis

$$\begin{split} \mathcal{L}_W &= -\frac{g}{\sqrt{2}} \left[\bar{u}_{Li} \gamma^\mu V^L_{ij} d_{Lj} + \bar{B}_L \gamma^\mu Y_L + \bar{d}_{R\alpha} \gamma^\mu V^R_{\alpha 4} Y_R \right] W^+_\mu + \text{H.c.} \\ \mathcal{L}_Z &= -\frac{g}{2c_W} \left[-\bar{d}_{Li} \gamma^\mu d_{Li} + \bar{B}_L \gamma^\mu B_L + \bar{d}_{R\alpha} \gamma^\mu X_{\alpha\beta} d_{R\beta} - \bar{Y} \gamma^\mu Y \right. \\ &\left. -2s_W^2 J^\mu_{EM} \right] Z_\mu \\ \mathcal{L}_H &= -\frac{g}{2M_W} \left[\bar{d}_{L\alpha} m^d_\alpha (\delta_{\alpha\beta} - X_{\alpha\beta}) d_{R\beta} + \bar{d}_{R\alpha} (\delta_{\alpha\beta} - X_{\alpha\beta}) m^d_\beta d_{L\beta} \right] H \end{split}$$

Distributions


$\ell^{\pm} \overline{\ell^{\pm} \ell^{\mp}} (Z)$

◆ Back



◆ Back

Distributions

$\ell^{\pm}\ell^{\pm}\ell^{\mp}$ (Z)

◆ Back

Comparison with MSSM

MSSM → multi-leptons

Multi-lepton signals with large missing energy can be produced in mSUGRA when gauginos are light ($m_{1/2}$ small)

(other SUSY scenarios: photons, long-lived particles ...)

Inclusive analysis based on lepton multiplicities [ATLAS CSC book] reveals which are the most characteristic signatures in sample points

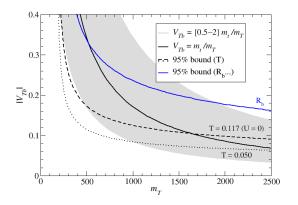
model discrimination

in mSUGRA signals with 0/1 lepton are the most significant ones in contrast with seesaw I–III where they are irrelevant

Comparison with MSSM

Significance with 1 fb ⁻¹										
	$M_1 + M_2$	0\ell	ℓ^\pm	$\ell^+\ell^-$	$\ell^{\pm}\ell^{\pm}$	$\ell^{\pm}\ell^{\pm}\ell^{\mp}$				
Δ (NH) Δ (IH)	300 + 300 $300 + 300$	_	-	1.9 1.1	2.2 3.1	4.2 8.3				
$\Sigma (M)$ $\Sigma (D)$	300 + 300 $300 + 300$	_	_	1.4 4.7	(5.0)	3.9 6.2				
mSUGRA (SU1)	264 + 262	6.3	18.0	6.9	7.2	1.3				
mSUGRA (SU2) mSUGRA (SU3)	160 + 149 $219 + 218$	0.9	6.0 17.7	1.07	1.9 7.7	2.7 11.5				
mSUGRA (SU4)	113 + 113	25	33.7	24.7	19.9	24.4				

with same M, multi-lepton signals larger in seesaw II, III Note: seesaw signals not optimised (scaled from 30 fb⁻¹ analysis)



Comparison with 4th generation

Indirect data prefer $m_{t'} - m_{b'} = 60 \text{ GeV}$

$$t'$$
 decay $\begin{bmatrix} \text{ either } & t' \to W^+b & \text{ or } & t' \to Zt \text{ absent, no } B \\ \text{ or } & t' \to W^+b' & \text{ on ot present for singlets} \end{bmatrix}$

Constraints from T parameter

