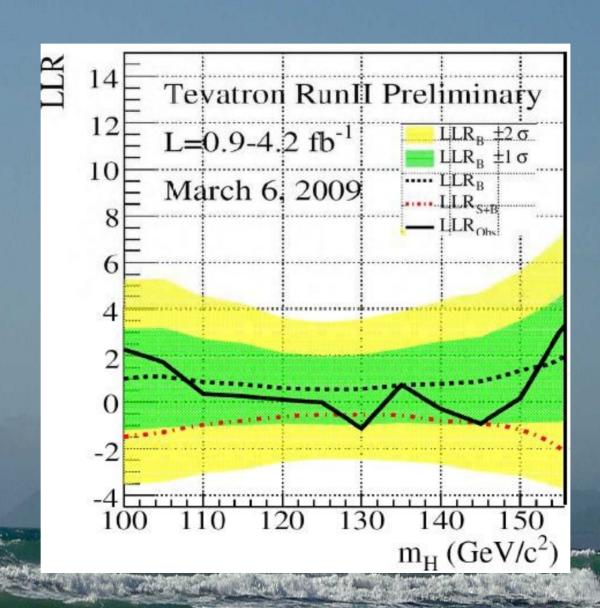
Multi-lepton final states in search of New Physics at the LHC IST (Lisbon) Thursday March 25, 2010

Multi-lepton signals in Composite Higgs Models


José Santiago
Física Teórica y del Cosmos
Universidad de Granada

F. del Aguila, A. Carmona, J.S. arXiv:1001.5151 and work in progress

The LHC is finally ready!

The race for the Higgs is heating up!

The race for the Higgs is heating up!

- ... But which Higgs?
- The SM Higgs is not natural

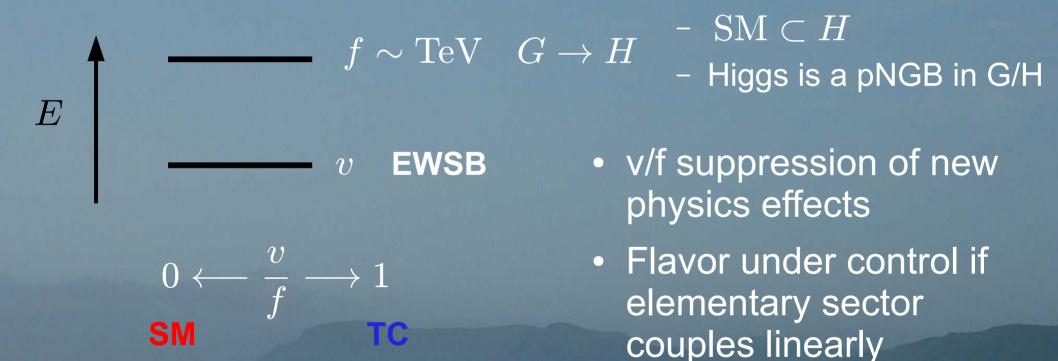
$$\delta m_H^2 \sim \Lambda^2$$

The Higgs wants to be as heavy as the heaviest physical scale

A natural alternative is a composite Higgs:

$$\delta m_H^2 \sim f^2 \sim {\rm TeV}^2$$

Finite size: insensitive to UV


Can show up in multi-lepton final states

Outline

- Composite Higgs models
- Partial compositeness
- Necessary ingredients: Custodial symmetry
- Light new resonances: fermion custodians
 - Quark custodians
 - Lepton custodians:
 - Neutrinos, A4 symmetry and light lepton custodians
 - New physics at the LHC with taus
- Conclusions

Composite Higgs Models

• Two scale symmetry breaking: Georgi, Kaplan, et al. 84-85

Kaplan 91

Composite Higgs Models

Kaplan 91

Partial Compositeness:

Contino, Kramer, Son, Sundrum 06

- SM: elementary states external to the strong sector
- Linear coupling: degree of compositeness

$$q_L$$
 Q_R H T_L t_R

$$\sim v\lambda \sin(\phi_L)\sin(\phi_R)$$

- Natural realization of flavor
- Heavier fields are more composite (stronger interaction to new physics)

- New strong sector accessible at the LHC?
 - Custodial symmetry: $\Delta T = 0 \; ({
 m tree \; level}) \; \; {
 m Delgado, \; May, \; Sundrum \; 03}$
 - Custodial protection of $Z\bar{\psi}\psi$ coupling Agashe, Contino, Da Rold, Pomarol 06

$$SU(2) \to SU(2)_L \times SU(2)_R$$

$$P_{LR}$$

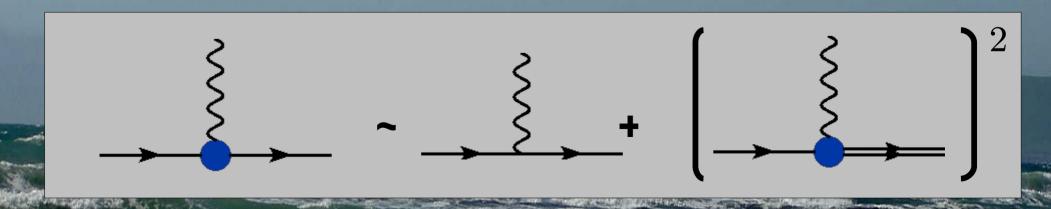
- New strong sector accessible at the LHC?
 - Custodial symmetry: $\Delta T = 0 \; ({\rm tree \; level})$ Agashe, Delgado, May, Sundrum 03
 - Custodial protection of $Z \bar{\psi} \psi$ coupling Agashe, Contino, Da Rold, Pomarol 06

Top is heavy

t_R composite t_L partly composite Large corrections to Zb_Lb_L coupling

b_L partly composite

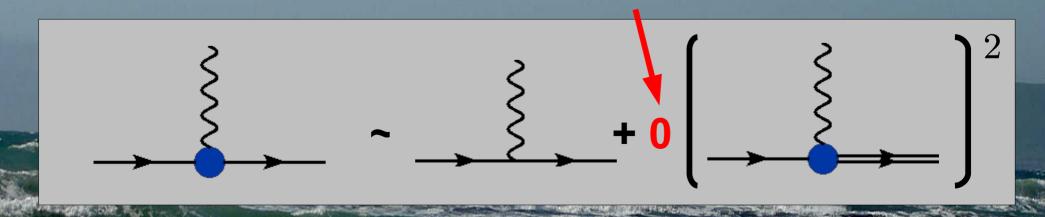
Also protects flavor: Albrecht et al 08-09


- New strong sector accessible at the LHC?
 - Custodial symmetry: $\Delta T = 0$ (tree level)
 - Custodial protection of $Z \bar{\psi} \psi$ coupling

Very light new fermions allowed!!!

Common lore

Anastasiou, Furlan, Santiago 09

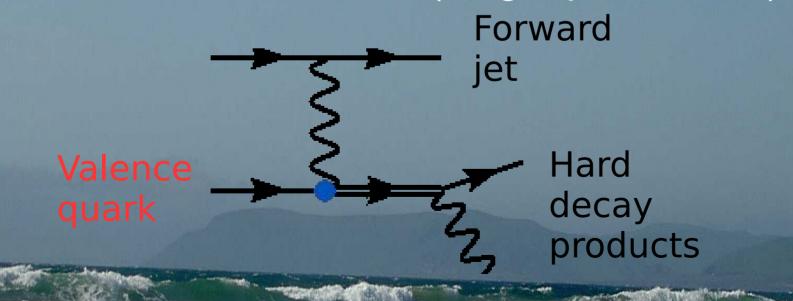

- New strong sector accessible at the LHC?
 - Custodial symmetry: $\Delta T = 0$ (tree level)
 - Custodial protection of $Z \bar{\psi} \psi$ coupling

Very light new fermions allowed!!!

With custodial protection

Anastasiou, Furlan, Santiago 09

Fermion Custodians

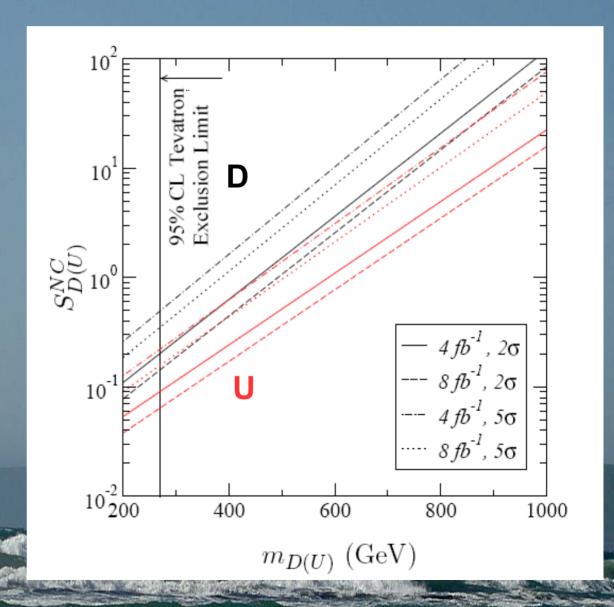

- Cancellations due to extra fields (custodial partners of the composite with SM quantum numbers)
- Custodians of very composite SM fields are light and couple strongly (in a custodially protected way)
- Natural scenario: new light vector-like quarks with a large coupling to the top see JAAS' talk

Contino, Servant 08 Aguilar-Saavedra 09 Mrazek, Wulzer 09

Quark Custodians

Atre, Carena, Han, Santiago 09

- Also possible for light generations
- Large (unconstrained) coupling to valence quarks
- Distinctive kinematics (single production)


Quark Custodians

Atre, Carena, Han, Santiago 09

- Tevatron analysis
 - NC channel

LHC analysis in progress

Atre, Azuelos, Carena, Han, Ozkan, Santiago, Unel

Aguila, Carmona, Santiago '10

- All analyses (of composite Higgs models) so far have focused on the quark sector
- Small neutrino masses and large mixing angles can be naturally realized in composite Higgs models
- An A₄ symmetry predicts tri-bimaximal mixing, correct scale of neutrino masses and very light new physics compatible with electroweak and flavor constraints

Aguila, Carmona, Santiago '10

• Corrections to TBM mixing and flavor universality generated from higher dimensional operators $\propto \frac{v}{\Lambda}$ A4 breaking UV scale

$$ullet \mu o e \gamma \propto rac{v^3}{\Lambda^3} \, {
m requires} \quad rac{v}{\Lambda} \lesssim 0.01 - 0.1$$

 $-m_ au \propto rac{v}{\Lambda}$ suppressed $\Rightarrow au$ very composite

Aguila, Carmona, Santiago '10

- Tau custodians: new light leptonic resonances that decay only through taus
- Tau couplings protected (custodial symmetry)
- Explicit realization: two degenerate doublets with hypercharges -1/2 and -3/2

$$T^{1}, T^{2} \quad (Q = -1)$$
 $M_{T^{1}} = M_{N} = M_{Y}$ $N \quad (Q = 0)$ $M_{T^{2}} \gtrsim M_{T^{1}}$

Aguila, Carmona, Santiago '10

- Tau custodians: new light leptonic resonances that decay only through taus
- Tau couplings protected (custodial symmetry)
- Explicit realization: two degenerate doublets with hypercharges -1/2 and -3/2

$$T^1, T^2 \quad (Q = -1)$$
 $T^1 \rightarrow Z \tau \quad N \rightarrow W^+ \tau$ $Y \quad (Q = -2)$ $T^2 \rightarrow H \tau \quad Y \rightarrow W^- \tau$ (100%)

Aguila, Carmona, Santiago in progress

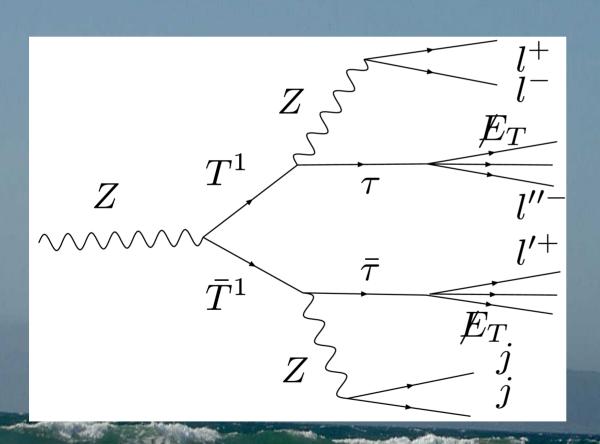
- EW production (relatively low xsection)
- But very light resonances (and high multiplicities -many custodians) allowed
- Multi-lepton final state: negligible backgrounds
 - Pair production
 - Require one leptonic Z
 - Require leptonic decay of the two taus

Aguila, Carmona, Santiago in progress

• Signature $pp \rightarrow l^+l^-l'^+l''^-jj \not\!\! E_T$

$$l, l', l'' = e, \mu$$

Crucial feature:


Plehn, Rainwater, Zeppenfeld '99

- Taus can be fully reconstructed
 - They are hard their decay products are very collimated: we assume full collimation to reconstruct tau momentum
- Require no further missing energy

Aguila, Carmona, Santiago in progress

• Signature $pp \rightarrow l^+l^-l'^+l''^-jj \not\!\! E_T$

$$l, l', l'' = e, \mu$$

Very collimated

Very collimated

Aguila, Carmona, Santiago in progress

• Signature $pp \rightarrow l^+l^-l'^+l''^-jj \not E_T$ $l, l', l'' = e, \mu$

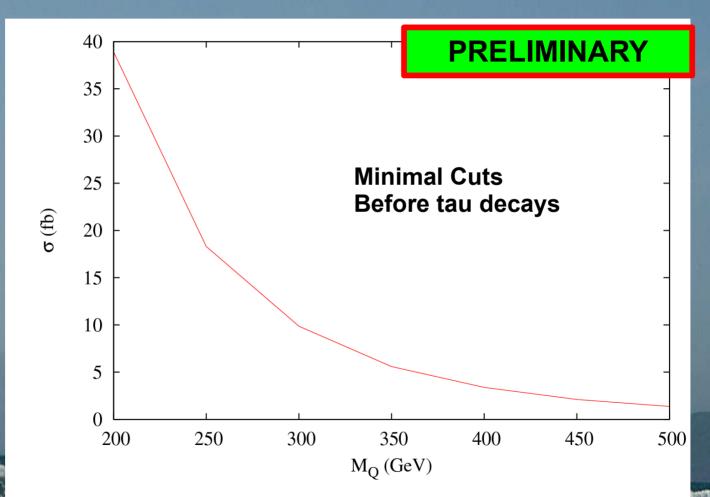
$$l, l', l'' = e, \mu$$

- Main backgrounds: (incomplete list)
 - Z t t+ jets (n=2)
 - Z b b+ jets (n=2)
 - ZZ+ jets (n=2)
 - ZW+ jets (n=2)

ALPGEN V2.13

MADGRAPH V 4.4.32

MLM matching


Hadronization + showering + ISR + FSR: PYTHIA

Fast detector simulation: PGS

Aguila, Carmona, Santiago in progress

Production x section

LHC 14TeV

Aguila, Carmona, Santiago in progress

• Cuts:

•
$$l^+l^-l'^+l''^-jj \not\!\!E_T \quad p_T(j), \not\!\!E_T \ge 20 \text{ GeV}$$

$$p_T(l) \ge 10 \text{ GeV}$$
 PRELIMINARY

$$p_T(j), \not\!\!E_T \ge 20 \text{ GeV}$$

$$|\eta_l| \le 2.5, |\eta_j| \le 5, \Delta R_{jj,lj} \ge 0.7$$

•
$$|M_{l^+l^-} - M_Z| \le 5 \text{ GeV}$$
 $\cos(\phi_{l'^+l''^-}) \ge -0.95$

- 50 GeV $\leq M_{ij} \leq 200 \text{ GeV}$
- Reconstruct taus assuming collinearity

•
$$|M_{L^1} - M_{L^2}| \le 100 \text{ GeV}$$

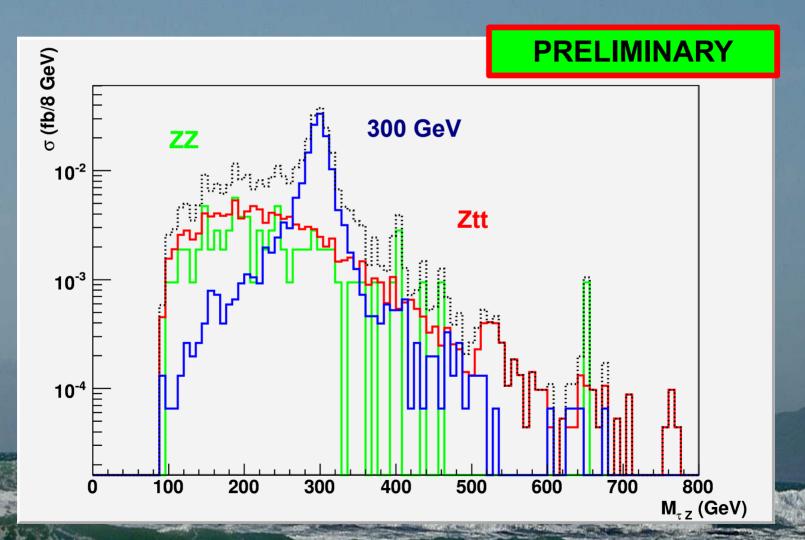
•
$$|M_{\tau Z} - M_{L^{\text{test}}}| \le 50 \text{ GeV}$$

Aguila, Carmona, Santiago in progress

• Cuts:

LHC 14TeV

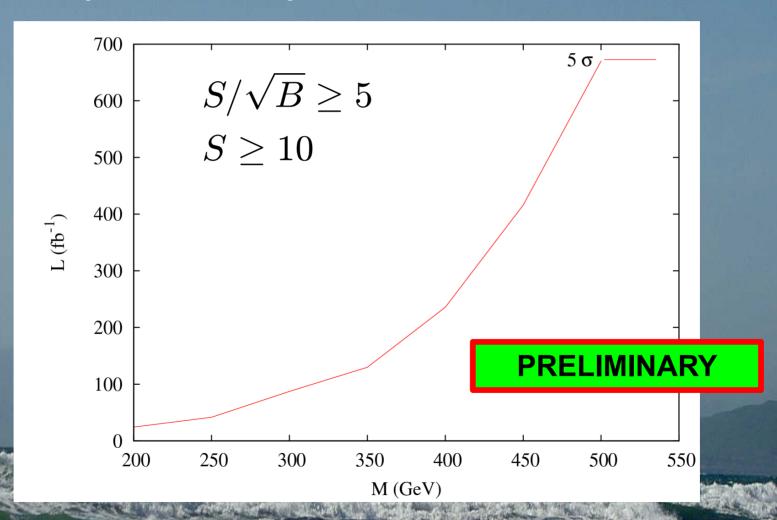
PRELIMINARY


Cuts	Signal (300 GeV) ${ m fb}^{-1}$	ztt fb ⁻¹	$ footnote{zz}{fb^{-1}}$
basic	0.31	0.41	0.29
$M_{l^+l^-}$	0.25	0.34	0.27
M_{jj}	0.18	0.17	0.12
$ M_{L^1} - M_{L^2} $	0.16	0.12	0.08
$M_{ au Z}$	0.13	0.03	0.02

 $\mathcal{L}_{5\sigma} \approx 77 \mathrm{fb}^{-1}$

Aguila, Carmona, Santiago in progress

Mass reconstruction


LHC 14TeV

Aguila, Carmona, Santiago in progress

Discovery luminosity

LHC 14TeV

Aguila, Carmona, Santiago in progress

Work in progress:

- Cuts must be optimized
- Early run analysis in progress (very light resonances with large couplings allowed)
 - 1 fb⁻¹ @ 3.5+3.5 TeV
- Comparison with single production

Conclusions

- Composite Higgs models are a natural candidate for a theory of EWSB
- Custodial symmetry allows for new very light fermionic resonances with large couplings to SM fermions: custodians
- New physics in multi-lepton final states (with taus): strong background reduction

Quark Custodians

Atre, Carena, Han, Santiago 09

- Also possible for light generations: new very light vector-like quarks with a strong mixing to valence quarks
 - Degenerate doublets with hypercharges 1/6 and 7/6 that mix only with u_R, in the basis of diagonal up Yukawas

$$\mathcal{L} = \mathcal{L}_{K} - \left[\lambda_{u}^{i} \bar{q}_{L}^{(0)i} \tilde{\varphi} u_{R}^{(0)i} + \lambda_{d}^{j} V_{ij} \bar{q}_{L}^{(0)i} \varphi d_{R}^{(0)j} \right.$$

$$+ \lambda_{Q} \left(\bar{Q}_{L}^{(0)} \tilde{\varphi} + \bar{X}_{L}^{(0)} \varphi \right) u_{R}^{(0)}$$

$$+ m_{Q} \left(\bar{Q}_{L}^{(0)} Q_{R}^{(0)} + \bar{X}_{L}^{(0)} X_{R}^{(0)} \right) + \text{h.c.} \right]$$

Quark Custodians

Atre, Carena, Han, Santiago 09

 Also possible for light generations: new very light vector-like quarks with a strong mixing to valence quarks

$$\sim 1 + \left(rac{\lambda_Q v}{m_Q}
ight)^2 - \left(rac{\lambda_X v}{m_X}
ight)^2$$
 • They can be large!!