

SPS Beam Dump Facility target prototype tests results

E. Lopez Sola (EN/STI)

on behalf of the BDF Target & Target Complex WG

MSWG Meeting 2019 #4

Introduction – BDF target

Requirement: high-Z materials + short interaction length

- 320 kW on target → Optimized segmentation, water cooling
- Tantalum alloy cladding to avoid corrosion/erosion effects

Introduction – BDF target challenges

Target mechanical design

Cooling system

Material R&D

Target simulations

More details: <u>arxiv.org/abs/1904.03074</u> Paper submitted to Physical Review of Accelerators and Beams

Experimental validation required in view of ESPP submission

BDF target prototype

- Representative beam tests → SPS high intensity beam
- Slow extraction required (1 second spill)

Fully dedicated experimental setup in TCC2 (NA)

Prototype timeline

Sept – Dec 2017 Conception and design Jan – Aug 2018 Preparation and construction Aug – Sep 2018 Assembly and installation Oct – Nov 2018 Prototype beam tests

Conception of the experiment

Design of the prototype

FEM simulations

YETS 2017/18 Preparation of the area

Manufacture of prototype parts

Procurement of core blocks

Instrumentation of the blocks

Assembly of the prototype

September 2018 Installation in TCC2 **3 MD days** Prototype test under beam

Prototype timeline

Sept – Dec 2017 Conception and design Jan – Aug 2018 Preparation and construction Aug – Sep 2018 Assembly and installation

Oct – Nov 2018 Prototype beam tests

Jan – Aug 2018 Construction Aug – Sep 2018 Installation

Oct – Nov 2018 Beam tests

Jan – Aug 2018 Construction Aug – Sep 2018 Installation

Oct – Nov 2018 Beam tests

30.08.2019

Jan – Aug 2018 Construction Aug – Sep 2018 Installation

Oct – Nov 2018 Beam tests

30.08.2019

Jan – Aug 2018 Construction

Aug – Sep 2018 Installation

Oct – Nov 2018 Beam tests

30.08.2019

ENGINEERING

Jan – Aug 2018 Construction

Aug – Sep 2018 Installation

Oct – Nov 2018 Beam tests

Baseline characteristics	Final BDF target	Target prototype		
Proton momentum [GeV/c]	400			
Beam intensity [p+/cycle]	4.0·10 ¹³ 3.0 - 4.0·10 ¹²			
Beam dilution	4 circular sweeps / s	/s No		
Cycle length [s]	7.2			
Spill duration [s]	1.0 (SX)			
Beam size (H/V) [mm]	8/8 3/2.5			
Average beam power [kW]	350	35		
Average beam power/spill [MW]	2.56	0.26		
Power density / spill [MW/m³]	18			

Reach representative level of temperatures and stresses despite lower intensity & lack of dilution

Jan – Aug 2018 Construction

Aug – Sep 2018 Installation

Oct – Nov 2018 Beam tests

30.08.2019

Von Mises Equivalent stress Ta2.5W cladding

Reasonable approximation of the level of stresses in the core and cladding materials, despite lack of dilution and lower intensity

Target prototype instrumentation

• 4 instrumented blocks

M. Guinchard, L. Bianchi (EN/MME)

Sept – Dec 2017 Ja Design C

a**n – Aug 2018** Construction Aug – Sep 2018 Assembly& Installation

Oct – Nov 2018 Beam tests

Target prototype assembly Fully remote installation in TCC2 during TS

30.08.2019

Sept – Dec 2017Jan – Aug 2018Aug – Sep 2018Oct – Nov 2018DesignConstructionInstallationBeam tests

Ist MD day – Successful target operation

Dedicated SPS supercycle

- SHiP cycle achieved (1 sec spill, 7.2 sec pulse)
- > 6h of dedicated beam
- ~1·10¹⁶ POT
- Maximum power on target = 33 kW

Sept – Dec 2017Jan – Aug 2018Aug – Sep 2018Oct – Nov 2018DesignConstructionInstallationBeam tests

Ist MD day – Successful target operation

Upstream and downstream BTV key for beam tuning

- Beam 2 3 mm down from target center
- Average beam size ≈ 2.9 x 2.4 mm (expected = 3 x 2.5 mm)

2nd MD day

30.08.2019

Upstream BTV camera failed (radiation exposure)

→ Beam tuning performed with downstream BTV

Sept – Dec 2017Jan – Aug 2018Aug – Sep 2018DesignConstructionInstallation

2nd MD day Cooling skid pump failure (Loss Of Coolant Accident)

30.08.2019

Beam interlocked after **4 pulses** on target without cooling

Oct - Nov 2018

Beam tests

Sept – Dec 2017
DesignJan – Aug 2018
ConstructionAug – Sep 2018
InstallationOct – Nov 2018
Beam tests

• 3rd MD day

■ Exchange of upstream BTV → "Sensitivity" tests

Jan – Aug 2018 Construction Aug – Sep 2018 Installation

Oct – Nov 2018 Beam tests

RP situation

- Dose rate measurements
 - Good agreement with simulations
 - Expected after 1 year:
 ~Sv/h @ contact

 \rightarrow Fully remote dismantling

- Water activation and circuit contamination detected
 - Probable cause: debris from bronze wheels
 - Good choice to have a separate cooling circuit

2019- 2020 PIE

Temperature sensors vs. FEM (1st MD)

Temperature evolution first beam pulses

Accurate estimation of the trend 🗸

2019- 2020 PIE

Temperature sensors vs. FEM (1st MD)

Maximum temperature at different intensities

-10

Data analysis

Temperature sensors vs. FEM (1st MD)

Maximum temperature at different intensities

< 10% relative deviation \checkmark

Data analysis

- Extrapolation to estimate maximum temperatures
- Representative level of temperatures assuming good correlation with FEM simulations (within 10% deviation)

Material		Maximum temperature (°C)			
		Prototype target		Final BDF target	
Соге	TZM	280	>	180	
	W	160	>	150	
Cladding	Ta2.5W	250	>	160	
	Та	195		-	

Strain sensors vs. FEM (1st MD)

Strain evolution – First beam pulses (block 4)

Good estimation of the trend Larger uncertainties during cool-down ✓ phase – flow behavior, beam effects

Strain sensors vs. FEM (1st MD)

Δε after beam impact at different intensities

< 25% relative deviation 🗸

Strain sensors vs. FEM (1st MD)

Δε after beam impact at different intensities

< 25% relative deviation 🗸

Representative level of stresses assuming good correlation with FEM simulations

Material		Maximum stress (MPa)		
		Prototype target	F	⁻ inal BDF target
Coso	TZM	180	>	130
Core	W	115	>	95
Claddiac	Ta2.5W	105	>	95
Cladding	Та	75		-

On-going paper preparation: BDF target prototype tests and results analysis

Next steps

Oct 2019 Prototype dismantling

2019- 2020 PIE

Fully remote target dismantling (ALARA 3) October – November 2019

Discussing whether to keep the area as slow extraction target test area

2019
Experimental
data analysis

Oct 2019 Prototype dismantling

2019- 2020 PIE

Post Irradiation Examination (PIE)

 6 irradiated blocks to be examined → influence of stress, thermal cycles, cooling and irradiation in material properties, interface bonding,...

- Metrology microscopy
- Non-destructive testing
- Destructive testing

→ Critical for the BDF target assessment

Conclusions

- Successful prototype design, construction and operation under the SPS proton beam
- The target prototype is a key development for the assessment of the final BDF target
- First analysis of the results completed, good correlation with the FEM simulations and representative level of temperatures and stresses reached
- The results of the PIE are crucial for the validation of the final BDF target design

Thank you for your attention Questions?