Precise determination of the strong coupling from jet rates

Gábor Somogyi

MTA-DE Particle Physics Research Group University of Debrecen

based on A. Verbytskyi, A. Banfi, A. Kardos, P. F. Monni, S. Kluth, GS, Z. Szőr, Z. Trócsányi, Z. Tulip´ant, G. Zanderighi, JHEP 1908 (2019) 129 [\[arXiv:1902.08158 \[hep-ph\]\]](https://arxiv.org/abs/1902.08158)

3rd FCC Physics and Experiments Workshop, CERN, 15 January 2020

Part I: $\alpha_{\rm s}$ from jet rates in e^+e^-

[PDG, The Review of Particle Physics, 2019 update]

_{[PDG,} The Review of Particle Physics, 2019 update]

Why $\alpha_{\rm s}$ in e^+e^- ?

- $\alpha_s(M_z)$ is known with ~ 0.8% precision
- however, the e^+e^- jets & shapes sub-field alone gives \sim 2.6% uncertainty
- large spread between measurements, note in particular the low values of $\alpha_{\rm s}(M_Z)$ obtained from event shapes at NNLO+N³LL using analytic hadronization models

Why jet rates?

- high perturbative accuracy, especially for the two-jet rate
- compared to event shapes, jet rates are known to be less sensitive to hadronization corrections

Measurements with new approaches/data are important!

Durham jet rates **The minor T**

algorithm \mathcal{B} in the following way. For each pair of pair of pair of pair of particles

Durham jet algorithm: sequential recombination algorithm with distance measure $y_{ij} = 2 \frac{\min(E_i^2, E_j^2)}{E^2}$ $y_{ij} = 2 \frac{\min(E_i^2, E_j^2)}{E_{vis}^2} (1 - \cos \theta_{ij})$ where E_i is particle energy and θ_{ij} is the angle between tree-momenta of particles *i* and *j*; momenta recombined using the *E*-scheme

Jet rates: R_n is the fraction of *n*-jet events for given *y*: $R_n(y) = \frac{\sigma_{n-\text{jet}}(y)}{\sigma_{\text{tot}}}$ Jet ra Mαβ = ⁱ p^α " i ⁱ |pi| ² , α, β = 1, 2, 3; $\overline{1}$ is the Haction $\overline{0}$

nT \sim nMa. The value of thrust minor is given by

- $R₃$ was used multiple times in the past to extract $\alpha_{\rm s}(M_Z)$
- Fixed-order perturbative predictions for R_3/R_2 at NNLO/N³LO [Gehrmann-De Ridder et al., Phys. Rev. Lett. 100 (2008) 172001, Weinzierl, Phys. Rev. Lett. 101 (2008) 162001]
- Resummed predictions for R_2 at NNLL accuracy became available in 2016 [Banfi et al., Phys. Rev. Lett. 117 (2016) 172001]
- This analysis naturally combines R_2 and R_3 for the first time

[[]ALEPH Coll., Eur. Phys. J. C35, 457 (2004)]

- Data from LEP and $PETRA + new OPAL$ measurements used to build correlation model for older measurements.
- Fixed-order perturbative predictions $+$ some b -mass corrections
- Resummation $+$ matching
- Non-perturbative corrections from state-of-the-art MC event generators $+$ Lund and cluster hadronization models

Combined analysis using $20+$ datasets from 4 collaborations

The data covers a wide range of cms energies: $\sqrt{s} = 35 - 207$ GeV

Data selection:

- measurements with both charged and neutral final state particles
- corrected for detector effects
- corrected for QED ISR
- no overlap with other samples
- sufficient precision
- sufficient information on dataset available

Predictions: fixed-order

Fixed-order predictions up to and including $\alpha_{\rm s}^3$ corrections known for some time

[Gehrmann-De Ridder et al., Phys. Rev. Lett. 100 (2008) 172001, Weinzierl, Phys. Rev. Lett. 101 (2008) 162001]

$$
R_n(y) = \delta_{2,n} + \frac{\alpha_s(Q)}{2\pi}A_n(y) + \left(\frac{\alpha_s(Q)}{2\pi}\right)^2B_n(y) + \left(\frac{\alpha_s(Q)}{2\pi}\right)^3C_n(y) + \mathcal{O}(\alpha_s^4)
$$

R₃ computed at **NNLO** accuracy using

CoLoRFulNNLO \Rightarrow obtain R_2 at **N**³**LO**

[Del Duca et al., Phys. Rev. D94 (2016)

• very good numerical precision and stab
 R_5 LO
 b-mass corrections from Zbb4: note on
 CoLoRFulNNLO \Rightarrow obtain R_2 at N³LO

[Del Duca et al., Phys. Rev. D94 (2016) no.7, 074019]

- very good numerical precision and stability
- b-mass corrections from Zbb4: note only NLO for $R_3 \Rightarrow$ **NNLO** for R_2

[Nason, Oleari, Phys. Lett. B407, 57 (1997)]

• mass effects included at distribution level, e.g.

$$
R_2(y) = (1 - r_b)R_2^{\text{N}^3\text{LO}}(y)_{m_b=0} + r_b R_2^{\text{NNLO}}(y)_{m_b \neq 0}
$$

where r_b is the fraction of b-quark events

$$
r_b = \frac{\sigma_{m_b \neq 0} (e^+e^- \to b\bar{b})}{\sigma_{m_b \neq 0} (e^+e^- \to \text{hardons})}
$$

Resummed predictions for R_2 at **NNLL** accuracy have been computed more recently [Banfi et al., Phys. Rev. Lett. 117 (2016) 172001]

$$
R_2(y) = e^{-R_{\text{NNLL}}(y)} \left[\left(1 + \frac{\alpha_s(Q)}{2\pi} H^{(1)} + \frac{\alpha_s(Q\sqrt{y})}{2\pi} C_{\text{hc}}^{(1)} \right) \mathcal{F}_{\text{NLL}}(y) + \frac{\alpha_s(Q)}{2\pi} \delta \mathcal{F}_{\text{NNLL}}(y) \right]
$$

- resummation performed with the ARES program
- matching to fixed-order: $log R$ scheme
- counting of logs (NNLL) here refers to logs in $\ln R_2$

In contrast, resummed predictions for R_3 have a much lower logarithmic accuracy

- more colored emitters
- state-of-the-art resummation includes only $\mathcal{O}(\alpha_s^n L^{2n})$ and $\mathcal{O}(\alpha_s^n L^{2n-1})$ terms in R_3 (note different logarithmic counting)
- in this analysis, no resummation for R_3 is performed

⇓

Main focus on N³LO+NNLL for R_2 , but also simultaneous analysis with NNLO for R_3

Effects associated with the parton-to-hadron transition cannot be computed in perturbation theory and must be estimated by other means

Obtained using state-of-the-art MC event generators: $e^+e^- \rightarrow jjjj$ merged samples with massive b-quarks

- Default setup " H^{L} ": Herwig7.1.4 for $e^+e^- \rightarrow 2,3,4,5$ jets, 2 and 3 jets at NLO using MadGraph5 and OpenLoops $+$ Lund fragmentation model
- Setup for hadronization systematics " H^{C} ": Herwig7.1.4 for $e^+e^- \rightarrow 2,3,4,5$ jets, 2 and 3 jets at NLO using MadGraph5 and OpenLoops $+$ cluster fragmentation model
- Setup for cross-checks " S^{C} ": Sherpa2.2.6 for $e^+e^- \rightarrow 2,3,4,5$ jets, 2 jets at NLO using AMEGIC, COMIX and OpenLoops $+$ cluster fragmentation model

To find the optimal value of α_s , MINUIT2 is used to minimize

$$
\chi^2(\alpha_s) = \sum_{\text{data set}} \chi^2(\alpha_s)_{\text{data set}}
$$

where $\chi^2(\alpha_{\rm s})$ are computed separately for each data set

$$
\chi^2(\alpha_{\rm s})=\vec{r}\,V^{-1}\vec{r}^{\mathsf{T}}\,,\qquad \vec{r}=(\vec{D}-\vec{P}(\alpha_{\rm s}))
$$

- \cdot \vec{D} : vector of data points
- $\vec{P}(\alpha_s)$: vector of theoretical predictions
- V: covariance matrix for \vec{D} (statistical correlations estimated from MC generated samples, systematic correlations modeled to mimic patters observed in OPAL data)

Fits: distributions

Central result and fit range selection

- avoid regions where theoretical predictions or hadronization model are unreliable
- Q^2 -dependent fit range: $[-2.25 + \mathcal{L}, -1]$ for R_2 and $[-2 + \mathcal{L}, -1]$ for R_3 (if used), where $\mathcal{L} = \ln \frac{M_Z^2}{Q^2}$
- note separate fit ranges for R_2 and R_3 (if used)
- smallest χ^2 /ndof, low sensitivity to fit range

Fits: systematics and uncertainties

Estimate the uncertainty by

- varying the renormalization scale $\mu_{ren} \in [Q/2, 2Q]$: (ren.)
- varying the resummation scale $\mu_{\text{res}} \in [Q/2, 2Q]$: (res.)
- varying the hadronization model H^L vs. H^C : (hadr.)
- fit uncertainty is obtained from the χ^2+1 criterion as implemented in MINUIT2: (exp.)

Notice much reduced renormalization scale uncertainty when NNLL resummation for R_2 is included

Extraction of $\alpha_s(M_Z)$ from the two-jet rate R_2 measured over a wide range of cms energies in e^+e^- collisions has been performed at $\mathsf{N}^3\mathsf{LO}\mathsf{+}\mathsf{NN}\mathsf{LL}$ accuracy for the first time:

 $\alpha_{\rm s}(M_Z) = 0.11881 \pm 0.00063(\text{exp.}) \pm 0.00101(\text{hadr.}) \pm 0.00045(\text{ren.}) \pm 0.00034(\text{res.})$ $\alpha_{\rm s}(M_Z) = 0.11881 \pm 0.00131$ (comb.)

- main source of uncertainty: hadronization modeling
- uncertainty from scale variation is considerably smaller than from hadronization
- experimental uncertainty comparable to perturbative one

Inclusion of NNLL resummation crucial for reducing perturbative uncertainty

Combined fit of R_2 at N³LO+NNLL and R_3 at NNLO, taking into account for the first time the correlation between the observables gives:

 $\alpha_{\rm s}(M_Z) = 0.11989 \pm 0.00045(\text{exp.}) \pm 0.00098(\text{hadr.}) \pm 0.00046(\text{ren.}) \pm 0.00017(\text{res.})$ $\alpha_s(M_Z) = 0.11989 \pm 0.00118$ (comb.)

- result is fully compatible with R_2 -only fit
- formally more precise than a fit based on R_2 alone,
- but much more sensitive to fit range selection

An accurate resummation of R_3 could potentially reduce the sensitivity to fit range selection and lead to an even more precise determination of $\alpha_s(M_Z)$

The following value of $\alpha_{s}(M_{Z})$ was obtained in the analysis

 $\alpha_{\rm s}(M_Z) = 0.11881 \pm 0.00063$ (exp.) \pm 0.00101 (hadr.) \pm 0.00045 (ren.) \pm 0.00034 (res.) $\alpha_s(M_Z) = 0.11881 \pm 0.00131$ (comb.)

- The result agrees with the world average $(\alpha_s(M_Z)_{\rm PDG2018} = 0.1181 \pm 0.0011^*)$ and has an uncertainty that is of the same size
- The presented result is the most precise in its subclass $[Salam, arXiv:1712.05165v2]$

*The PDF average after the 2019 update reads $\alpha_{\rm s}(M_Z) = 0.1179 \pm 0.0010$ 14

Part II: lessons for FCC-ee

More legs, more N's

- beyond NNLO for 3-jet event shapes/rate?
- beyond 3-jet rate/event shapes at NNLO?
- improved logarithmic accuracy for R_2 , R_3 ?

Mass effects, mixed $EW \times QCD$ corrections

- R_3 at NNLO with massive *b*-quarks?
- mixed EW×QCD corrections for R_2 , R_3 ?

Two issues

- full 2- and 3-loop matrix elements that would be needed are presently not known, however great progress, so expect new results [see talks by C. Duhr, J. Usovitsch, K. Papadopoulos]
- computing physical observables using those matrix elements is a separate issue (definitely beyond NNLO), new ideas may be needed [see talks by G. Rodrigo, R. Pittau]

More legs, more N's

- beyond NNLO for 3-jet event shapes/rate? \Rightarrow not top priority for this fit
- beyond 3-jet rate/event shapes at NNLO? \Rightarrow not top priority for this fit
- improved logarithmic accuracy for R_2 , R_3 ? \Rightarrow already within reach

Mass effects, mixed $EW \times QCD$ corrections

- R_3 at NNLO with massive *b*-quarks? \Rightarrow more relevant this fit
- mixed EW×QCD corrections for R_2 , R_3 ? \Rightarrow more relevant for this fit

Two issues

- full 2- and 3-loop matrix elements that would be needed are presently not known, however great progress, so expect new results [see talks by C. Duhr, J. Usovitsch, K. Papadopoulos]
- computing **physical observables** using those matrix elements is a **separate issue** (definitely beyond NNLO), new ideas may be needed [see talks by G. Rodrigo, R. Pittau]
-
-
-

-
-

Improved logarithmic accuracy for R_2 , R_3

- very recently the NNLL radiator for three hard emitters has been defined
- allows for NNLL resummation of event shapes in the near-to-planar limit, e.g. D-parameter at NNLL+NLO

[Arpino et al. arXiv:1912.09341]

Analytic pieces in place for N³LL and NNLL resummation for R_2 and R_3

The elephant in the room: the main source of uncertainty is due to hadronization modeling

- naively going to higher energies helps: hard. corr. $\sim 1/Q$, however...
- FCC-ee energy is not orders of magnitude larger than LEP
- going up in energy there is an interplay between smaller hadronization corrections but larger background and much smaller luminosity

Need better MC's $+$ hadronization models/calibration in e^+e^- In a perfect world

- parton showers with NNLL logarithmic accuracy matched to NNLO
- hadronization models calibrated from scratch with many different observables, since current models were tuned using MC's with lower accuracy [see also talk by P. F. Monni]

Alternatively

- need a (much) more refined analytical understanding of non-perturbative corrections
- look for better observables, with smaller hadronization corrections [see talk by Z. Trócsányi]

At LEP (and before) the signal process was $e^+e^-\to Z/\gamma\to$ hadrons, while e ⁺e[−] → VV /ZH → hadrons (+ leptons) was background to be subtracted

- introduces a lot of systematic uncertainties
- but this is what could be compared to precisely computed predictions

One way to deal with increased background at FCC-ee could be to redefine the signal process as $e^+e^- \rightarrow$ hadrons

- only background to this is from $e^+e^- \to VV/ZH \to$ hadrons + leptons, e.g. $e^+e^- \to W^+W^- \to q \bar{q} l \bar{\nu}_l$, which can be suppressed almost completely
- however with this redefinition already the Born processes $e^+e^- \rightarrow VV/ZH \rightarrow q\bar{q}q\bar{q}$ involve four colored particles \Rightarrow the precise theoretical description of all channels is a major challenge
- EW corrections to $e^+e^- \rightarrow Z/\gamma \rightarrow$ hadrons must also be addressed

New extraction of $\alpha_{\rm s}(M_{Z})$ from fit of the Durham two-jet rate R_{2} in $e^{+}e^{-}$ annihilation to $N^3LO+NNLL$ predictions $+$ hadronization corrections extracted from state-of-the-art MC event generators:

 $\alpha_{\rm s}(M_Z) = 0.11881 \pm 0.00063(\text{exp.}) \pm 0.00101(\text{hadr.}) \pm 0.00045(\text{ren.}) \pm 0.00034(\text{res.})$

- the result is consistent with the world average and the most precise in its subclass
- main source of uncertainty from modeling of hadronization corrections

Lessons for a similar measurement at FCC-ee [see also talk by A. Verbytskyi]

- perturbative uncertainty under control, but improvements possible
- N^4 LO/N³LO for R_2/R_3 : not the priority from the point of view of this measurement
- b-quark mass corrections and $EW \times QCD$ corrections seem more relevant
- N³LL/NNLL resummation for R_2/R_3 are already within reach
- better understanding of hadronization corrections crucial for improvement
- could consider a redefinition of the signal: $e^+e^- \rightarrow$ hadrons

Backup

Hadronization corrections: simultaneous corrections for R_2 and R_3

Challenge: simultaneous corrections for R_2 and R_3

• hadronization corrections derived on a bin-by-bin basis, $R_{n,\text{hadron}} = R_{n,\text{parton}} f_n(y)$, $n=2,3,4,\ldots$ can violate physical constraints: $0\leq R_n\leq 1$ and $\sum R_n=1$ n

Solution:

• introduce ξ_1 and ξ_2 such that at parton level $R_{2,\mathrm{parton}} + R_{3,\mathrm{parton}} + R_{>4,\mathrm{parton}} = 1$

$$
R_{2,\mathrm{parton}}=\cos^2\xi_1\,,\qquad R_{3,\mathrm{parton}}=\sin^2\xi_1\cos^2\xi_2\,,\qquad R_{\geq 4,\mathrm{parton}}=\sin^2\xi_1\sin^2\xi_2\,,
$$

similarly at hadron level, set

 $R_{2,\text{hadron}} = \cos^2(\xi_1 + \delta \xi_1), \qquad R_{3,\text{hadron}} = \sin^2(\xi_1 + \delta \xi_1) \cos^2(\xi_2 + \delta \xi_2),$ $R_{\geq 4, \text{hadron}} = \sin^2(\xi_1 + \delta \xi_1) \sin^2(\xi_2 + \delta \xi_2)$

• the functions $\delta \xi_1(y)$ and $\delta \xi_2(y)$ account for hadronization corrections and are extracted from the MC samples

This approach clearly preserves physical constraints 22

Hadronization corrections: $\delta \overline{\xi_1}(y)$ and $\delta \overline{\xi_2}(y)$

- to avoid binning effects, the hadronization corrections are parametrized with smooth functions
- vertical lines show the fit ranges for the reference fits of R_2 and R_3

Hadronization corrections: hadron to parton ratios

- to avoid binning effects, the hadronization corrections are parametrized with smooth functions
- vertical lines show the fit ranges for the reference fits of R_2 and R_3

Fit of $\alpha_s(M_Z)$ from experimental data for R_2 obtained using N³LO and N³LO+NNLL predictions for R_2 . The reported uncertainty comes from MINUIT2

$R_2 + R_3$ fits

Simultaneous fit of $\alpha_s(M_Z)$ from experimental data for R_2 and R_3 obtained using N³LO and $N^3LO+NNLL$ predictions for R_2 and NNLO predictions for R_3 . The reported uncertainty comes from MINUIT2

Consistency tests

Several consistency tests performed

- simultaneous fit of $R_2 + R_3$ (see above)
- separate R_3 fit
- variation of χ^2 definition
- change of fit ranges
- multiplicative hadronization corrections
- Sherpa MC hadronization S^C
- stability across \sqrt{s} (see below)
- exclusion of data with $\sqrt{s} < M_Z$

 \rightarrow N³LO+NNLL+ H^L \rightarrow N³LO+NNLL+ H^C ${\rm N^3LO+NNLL+} S^C$