Higgs Cross section and Mass measurements at CEPC

Xin Shi
On behalf of CEPC Higgs Study Group
Introduction

• The discovery of a Higgs boson in 2012 by ATLAS and CMS opened a new era in particle physics

• Subsequent measurements of the properties indicate Standard Model (SM) Higgs boson

• However, the SM does not predict the parameters in the Higgs potential.
 • Vast difference between the Planck scale and weak scale remains a major mystery

• Precision measurements of Higgs boson properties will be a critical component of any road map for high energy physics in the coming decades.
New Physics beyond the SM

• Deviations in the Higgs couplings from the SM expectations.

\[\delta = c \frac{v^2}{M_{\text{NP}}^2} \]

- Vacuum expectation value of Higgs field
- Typical mass scale of new physics

• The HL-LHC will measure the Higgs boson couplings \(\sim 5\% \).
• Probing new physics significantly beyond the LHC reach require \(\sim \% \) level of Higgs coupling measurement. \(\rightarrow \) Need for Higgs factory.
CEPC - Circular Electron Positron Collider

- $E_{CM} = 240$ GeV
- 100 km ring
- Higgs production: $e^+e^- \rightarrow ZH$, recoil mass method
- Expected int. lumi: 5.6 ab^{-1}, 1M Higgs (7 years with two detectors)
- Higgs coupling to Z accuracy $\sim 0.25\%$
- Model independent measurement of Higgs width

- CDR released on Nov 2018
 http://cepc.ihep.ac.cn/
- Input to European Strategy:
 arXiv: 1901.02170, 1901.03169
CEPC Detector Concept

- Higgs factory $\sqrt{s} = 240$ GeV 7 yrs \rightarrow 1M Higgs, 1B Z, 100M W
- Z factory $\sqrt{s} = 91.2$ GeV \rightarrow $10^{11} - 10^{12}$ Z bosons
- WW threshold scans $\sim \sqrt{s} = 161$ GeV \rightarrow 10^7 W
Object reconstruction and identification

• ARBOR particle flow
• Leptons
 • 7% H production with leptons
 • Lepton ID algo: LICH eff 99.9%
 • Dimuon mass reso. 0.16%
• Photons
 • H2 gg and H2Zg
 • Tau leptons and jets
 • Mass reso. 2.5%
• Jets
 • 70% H decay into jets (bb, cc, gg)
 • 22% through WW, * ZZ* cascades
 • JES: 3-5%, W and Z: 4.4%.
CEPCv4 and optimization

- Smaller solenoidal field 3T (14% degrades of momentum reso.)
- Reduced calorimeter dimensions
- ECAL readout sensor size changed from 5x5 to 10x10 mm²
- Add Time-of-Flight for flavor physics potential
Higgs production and decay

ZH associate production

W fusion

Z fusion

Vector Boson fusion (VBF)

- ZH process reaches maximum at ~250 GeV, decreases asymptotically as 1/s
- VBF proceeds through t-channel, increases logarithmically as \(\ln^2(s/M_V^2) \)
- VBF dominated by W fusion due to small neutral-current Zee coupling
Higgs Decay in Standard Model predictions

<table>
<thead>
<tr>
<th>decay mode</th>
<th>branching ratio</th>
<th>relative uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow b \bar{b}$</td>
<td>57.7%</td>
<td>+3.2%, −3.3%</td>
</tr>
<tr>
<td>$H \rightarrow c \bar{c}$</td>
<td>2.91%</td>
<td>+12%, −12%</td>
</tr>
<tr>
<td>$H \rightarrow \tau^+\tau^-$</td>
<td>6.32%</td>
<td>+5.7%, −5.7%</td>
</tr>
<tr>
<td>$H \rightarrow \mu^+\mu^-$</td>
<td>2.19×10^{-4}</td>
<td>+6.0%, −5.9%</td>
</tr>
<tr>
<td>$H \rightarrow WW^*$</td>
<td>21.5%</td>
<td>+4.3%, −4.2%</td>
</tr>
<tr>
<td>$H \rightarrow ZZ^*$</td>
<td>2.64%</td>
<td>+4.3%, −4.2%</td>
</tr>
<tr>
<td>$H \rightarrow \gamma\gamma$</td>
<td>2.28×10^{-3}</td>
<td>+5.0%, −4.9%</td>
</tr>
<tr>
<td>$H \rightarrow Z\gamma$</td>
<td>1.53×10^{-3}</td>
<td>+9.0%, −8.8%</td>
</tr>
<tr>
<td>$H \rightarrow gg$</td>
<td>8.57%</td>
<td>+10%, −10%</td>
</tr>
<tr>
<td>Γ_H</td>
<td>4.07 MeV</td>
<td>+4.0%, −4.0%</td>
</tr>
</tbody>
</table>

Uncertainties include contributions from theoretical and parametric sources.
Background processes

- Bhabha scattering (ee)
- ISR return (Z gamma)
- Diboson (WW/ZZ)
- Single boson production (eeZ, evW)

- Considered interference effects in the simulation
- Assume stable W and Z
Cross sections of Higgs and other SM processes

<table>
<thead>
<tr>
<th>process</th>
<th>cross section</th>
<th>events in 5.6 ab⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higgs boson production, cross section in fb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e^+ e^- \rightarrow ZH)</td>
<td>204.7</td>
<td>(1.15 \times 10^6)</td>
</tr>
<tr>
<td>(e^+ e^- \rightarrow \nu_e \bar{\nu}_e H)</td>
<td>6.85</td>
<td>(3.84 \times 10^4)</td>
</tr>
<tr>
<td>(e^+ e^- \rightarrow e^+ e^- H)</td>
<td>0.63</td>
<td>(3.53 \times 10^3)</td>
</tr>
<tr>
<td>total</td>
<td>212.1</td>
<td>(1.19 \times 10^6)</td>
</tr>
</tbody>
</table>

background processes, cross section in pb		
\(e^+ e^- \rightarrow e^+ e^- (\gamma) \) (Bhabha)	850	\(4.5 \times 10^9 \)
\(e^+ e^- \rightarrow q\bar{q} (\gamma) \)	50.2	\(2.8 \times 10^8 \)
\(e^+ e^- \rightarrow \mu^+ \mu^- (\gamma) [\text{or} \tau^+ \tau^- (\gamma)] \)	4.40	\(2.5 \times 10^7 \)
\(e^+ e^- \rightarrow WW \)	15.4	\(8.6 \times 10^7 \)
\(e^+ e^- \rightarrow ZZ \)	1.03	\(5.8 \times 10^6 \)
\(e^+ e^- \rightarrow e^+ e^- Z \)	4.73	\(2.7 \times 10^7 \)
\(e^+ e^- \rightarrow e^+\nu W^- / e^-\bar{\nu} W^+ \)	5.14	\(2.9 \times 10^7 \)

- Interference between ZH and \(\nu_e \bar{\nu}_e H \) and \(e^+ e^- H \)
- The cross sections can not be separated
- \(\sqrt{s} = 250 \text{ GeV} \)
- Assume stable W and Z
- ZZ, WW, and qqbar events used to characterize the detector performance
- Generated with WHIZARD, processed with MokkaC
Higgs tagging with recoil mass

- Higgsstrahlung (ee→ZH), Z decays to a pair of visible fermions (ff), the recoil mass against the Z:
 \[M_{\text{recoil}}^2 = (\sqrt{s} - E_{ff})^2 - p_{ff}^2 = s - 2E_{ff}\sqrt{s} + m_{ff}^2 \]

- Higgs boson mass can be measured from the peak of the recoil resonance
- Resonance width dominated by the beam energy spread (ISR included) and energy/momentum resolution (if Higgs width is 4.07MeV)
- \(\sigma (ZH) \) can be extracted by the fitting of \(M_{\text{recoil}} \)
Z boson leptonic decays

• Easily identifiable and the lepton momenta can be precisely measured.
• Signal events with full detector simulation
• Background events with fast detector simulation
• SM process with at least 2 leptons in final states are considered as backgrounds

• Dimuon: (BDT)
 • Dimuon invariant mass 80 – 100 GeV
 • Recoil mass 120 – 140 GeV
 • Muon pair transverse momentum > 20 GeV, opening angle < 175°
 • Long high-mass tail due to ISR

• Electron-positron pair: (Cut based)
 • Larger backgrounds from Bhabha scattering and single boson production
 • Electron-positron pair invariant mass 86.2 – 96.2 GeV
 • Recoil mass 120 – 150 GeV
 • Dominant backgrounds: \(e^+e^- \rightarrow e^+e^-(\gamma), \ e^+\nu W^- (e^-\bar{\nu}W^+), e^+e^-Z \)
Z hadronic decays

- Benefits from larger $Z \rightarrow q\bar{q}$ decay branching ratio
- Suffers from worse jet energy resolution than tracks
- Ambiguity in selecting jets can degrade the analysis performance and introduce model-dependence
- Main backgrounds $Z\gamma$ and WW production
- Worse S/N and recoil mass resolution compared with leptonic decays
Measurements of $\sigma(ZH)$ and m_H

- Fit to recoil mass distributions of $e^+e^- \to Z + X \to \ell^+\ell^-/q\bar{q} + X$ to extract inclusive $\sigma(ZH)$ and Higgs boson mass m_H
- Modeled with Crystal ball + polynomial function
- Recoil mass distribution is insensitive to the intrinsic Higgs width
- Large statics $e^+e^- \to Z + X \to q\bar{q} + X$ dominates the cross section sensitivity

<table>
<thead>
<tr>
<th>Z decay mode</th>
<th>Δm_H (MeV)</th>
<th>$\Delta\sigma(ZH)/\sigma(ZH)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>e^+e^-</td>
<td>14</td>
<td>1.43%</td>
</tr>
<tr>
<td>$\mu^+\mu^-$</td>
<td>6.5</td>
<td>0.86%</td>
</tr>
<tr>
<td>$q\bar{q}$</td>
<td>-</td>
<td>0.61%</td>
</tr>
<tr>
<td>Combined</td>
<td>5.9</td>
<td>0.5%</td>
</tr>
</tbody>
</table>
Summary

• The discovery of Higgs at LHC is a major breakthrough on both experiment and theory.

• The CEPC complements the LHC to study the Higgs in great detail with unprecedented precision.

• Higgs tagging using recoil mass of Z in the $e^+e^- \rightarrow ZH$ process could achieve an inclusive Higgs cross section uncertainty of 0.5% and Higgs mass uncertainty of 5.9MeV (combining all leptonic and hadronic channels with 5.6 ab$^{-1}$ data).
Extra Slides
Basic parameters of CEPC-v1 detector

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>tracking system</td>
<td></td>
</tr>
<tr>
<td>vertex detector</td>
<td>6 pixel layers</td>
</tr>
<tr>
<td>Silicon tracker</td>
<td>3 barrel layers, 6 forward disks on each side</td>
</tr>
<tr>
<td>time projection chamber</td>
<td>220 radial readouts</td>
</tr>
<tr>
<td>calorimetry</td>
<td></td>
</tr>
<tr>
<td>ECAL</td>
<td>W/Si, $24X_0$, 5x5 mm2 cell with 30 layers</td>
</tr>
<tr>
<td>HCAL</td>
<td>Fe/RPC, 6x1, 10x10 mm2 cell with 40 layers</td>
</tr>
<tr>
<td>performance</td>
<td></td>
</tr>
<tr>
<td>track momentum resolution</td>
<td>$\Delta(1/p_T) \sim 2 \times 10^{-5}$ (1/GeV)</td>
</tr>
<tr>
<td>impact parameter resolution</td>
<td>$5 \mu m @ 10 \mu m/[(p/GeV)(\sin \theta)^{3/2}]$</td>
</tr>
<tr>
<td>ECAL energy resolution</td>
<td>$\Delta E/E \sim 16% / \sqrt{E}$/GeV@1%</td>
</tr>
<tr>
<td>HCAL energy resolution</td>
<td>$\Delta E/E \sim 60% / \sqrt{E}$/GeV@1%</td>
</tr>
</tbody>
</table>

![Diagram of CEPC-v1 detector concept](image)

Fig. 2. (color online) The layout of one quarter of the CEPC-v1 detector concept.
Simulated invariant mass distributions

CEPC 2018

ννH, H→μμ

–CEPC Simulation

CEPC 2018

ννH, H→γγ

–CEPC Simulation