Progress on Arcadia

3rd FCC Physics and Experiments Workshop

CERN, Geneva

January 14th, 2020

Andrea Paternò
on behalf of the ARCADIA Collaboration
ARCADIA (INFN CSNV Call Project)

Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays

INFN - Bologna, Milano, Padova, Perugia, Pavia, TIFPA, Torino

3-year >1M€ R&D project 2019-2021

Sensor&CMOS design, DAQ, System characterisation (medical, future colliders, space)
Towards a CMOS sensor design and fabrication platform allowing for:

- Active sensor thickness in the range 50 µm to 500 µm or more
- Operation in full depletion with fast charge collection only by drift
- Small charge collecting electrode for optimal signal-to-noise ratio
- Scalable readout architecture with ultra-low power capability (O(20 mW/cm²))
- Compatibility with standard CMOS fabrication processes: concept study with small-scale test structure (SEED), technology demonstration with large area sensors (ARCADIA)
- Use of a deep sub-micron 110nm CMOS node for higher gate density
SEED - The Sensor

- **Two test structures: MATISSE and Pseudo-Matrices**
- **Technology**: 110 nm CMOS CIS technology (quad-well, both PMOS and NMOS), high-resistivity bulk
- **Backside**: diode surrounded by a guard-ring, custom patterning, process developed with LFoundry
- **Process**, back-side pattern and geometry validated in silicon (both MATISSE and pseudo-matrices)
Small-scale demo: MATISSE

PIXEL ELECTRONICS

<table>
<thead>
<tr>
<th>DESIGN</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>CMOS 110 nm</td>
</tr>
<tr>
<td>Voltage Supply</td>
<td>1.2 V</td>
</tr>
<tr>
<td>Measurements</td>
<td>Hit Position</td>
</tr>
<tr>
<td></td>
<td>Energy Loss</td>
</tr>
<tr>
<td>Number of Channels</td>
<td>24 × 24</td>
</tr>
<tr>
<td>Input Dynamic Range</td>
<td>Up to 24 ke−</td>
</tr>
<tr>
<td>Sensor Capacitance</td>
<td>~10 fF</td>
</tr>
<tr>
<td>Analog Gain</td>
<td>131 mV/fC</td>
</tr>
<tr>
<td>CSA Input Common Mode Voltage</td>
<td>> 600 mV</td>
</tr>
<tr>
<td>Local Memories</td>
<td>2 (~70 fF each)</td>
</tr>
<tr>
<td>Noise</td>
<td>< 100 e̅</td>
</tr>
<tr>
<td>~40 e̅</td>
<td></td>
</tr>
<tr>
<td>Shutter Type</td>
<td>Snapshot</td>
</tr>
<tr>
<td>Readout Type</td>
<td>Correlated Double Sampling</td>
</tr>
<tr>
<td></td>
<td>Double Sampling</td>
</tr>
<tr>
<td>Readout Speed</td>
<td>Up to 5 MHz</td>
</tr>
<tr>
<td>Other Features</td>
<td>Internat test pulse</td>
</tr>
<tr>
<td></td>
<td>Mask Mode</td>
</tr>
<tr>
<td></td>
<td>Baseline Regulation</td>
</tr>
</tbody>
</table>
Small-scale demo: MATISSE

Charge Sensitive Amplifier
With a RESET transistor

Correlated Double Sampling

Sensor

In-pixel digital logic

Test Pulse

CAS

Read Out

S1_out

B1

C1

S2_out

B2

C2

Next Pixel

Baseline

Previous Pixel

Graphical representation of the MATISSE small-scale demo system components.
Results in a nutshell: MATISSE

Full depletion studies in 100-300-400 µm prototypes

Map of pixel reset voltage (MATISSE 24x24 pixel matrix, 300µm thickness) as a function of the back-side voltage applied to the sensor. Depletion starts from the back-side.
Results in a nutshell: MATISSE

Preliminary results with ^{55}Fe

The ^{55}Fe emits monochromatic X-rays at 5.9 keV (K_α). A K_β line at 6.5 keV is also emitted with a relative probability below 5%.

$$\frac{ADC_1}{ADC_2} \approx \frac{6.5 \text{ keV}}{5.9 \text{ keV}}$$

Preliminary results with Lasers
Small-scale demo: Pseudo-Matrices

- **Sensor thicknesses:** 100 µm, 300 µm, 400 µm
- **Three matrices with different pixel sizes:** 10 µm (40 x 45), 25 µm (16 x 18) and 50 µm (8 x 9)
- **Front-side deep-pwell,** would host the CMOS electronics (no electronics on PMs)
- **All the collector nodes of a matrix are shorted and connected to a PAD**
- **Each pixel is shorted using Al metal lines of increasing width per PM:** 6, 8 and 15 µm
Results in a nutshell: Pseudo-Matrices

Cuts along the Metal + P and Metal + N lines on the energy map with varying bias voltages show uniform Charge Collection Efficiency above Full Depletion with ~1.7 % loss over metals (100 µm thick)

(RUDER BOŠKOVIĆ INSTITUTE)* Zagreb, Croatia
600 keV to 2 MeV Tandetron
TANDEM 1-6 MeV proton source
LASER TCT laboratory

Standard deviation maps show the expected higher electronic noise when the sensor is not depleted (below 30 V), due to the higher top capacitance.
Apply the experience developed with SEED to a versatile, full-chip prototype targeting most stringent requirements for a number of applications:

- **Low power** → $O(20 \text{ mW cm}^{-2})$
 - Scale down to $O(10 \text{ mW cm}^{-2})$ in Ultra Low Power mode

- **Small pixel pitch** → $25 \times 25 \mu m^2$

- **Thin sensors** → $100 \mu m$

- **Scalability to large area** → up to $4 \times 4 \text{ cm}^2$

- **High particle rate** → up to 100 MHz cm^{-2}

- **Timing resolution** → $O(1 \mu s)$ (lower bound due to analog power)
 - Investigating more advanced solutions for $O(10 \text{ ns})$ timing
Pixel size 25 µm x 25 µm: process, back-side pattern and geometry validated in silicon (both MATISSE and pseudo-matrices, electrical, laser, radioactive source and microbeam).

Matrix core 512 x 512, “side-abuttable” to accomodate a 1024 x 512 active area (2.56 x 1.28 cm²).

Matrix and EoC architecture, data links and payload ID: scalable to 2048 x 2048 pixels\(^{(1)}\)

Triggerless, binary data readout, event rate up to 100 MHz cm\(^{-2}\)

\(^{(1)}\) 1D and 2D stitching available at LFoundry
Matrix (512 x 512) are partitioned into Columns (32 x 512), which are independently read out and have a dedicated Serializer and LVDS link.

Columns are in turn composed of 16 Core Columns (2 x 512) arranged as double pixel columns.

Each Core Column stacks 16 Cores (2 x 32), which are the minimum synthesizable unit in the Matrix.

Pixel Regions (2 x 4) propagate their output to the periphery, bypassing inactive Cores.
ARCADIA - Smart Clustering Readout

- 2 × 4 pixel Regions, logically divided into a Master (2 x 2) and a Slave (2 x 2)
- Try to read out clusters in as few data packets as possible
- Slaves (w/o readout) choose a Master to attach to (its own, or the following)
- Masters propagate 2 × 4 pixel data packet to periphery and await Acknowledge pulse
- Significant reduction of column occupancy and readout clock
Both the Smart Clustering and the Token selection mechanism use combinatorial logic

Multiplexers select the data to propagate based on Bottom and Top Assign
ARCADIA - Readout performance

<table>
<thead>
<tr>
<th></th>
<th>w/ Smart Clustering</th>
<th>w/o Smart Clustering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event Rate</td>
<td>100 MHz cm(^{-2})</td>
<td></td>
</tr>
<tr>
<td>Matches</td>
<td>99,778%</td>
<td>99,712%</td>
</tr>
<tr>
<td>Ghost</td>
<td>0,004%</td>
<td>0,08%</td>
</tr>
<tr>
<td>Duplicate</td>
<td>0,11%</td>
<td>0,02%</td>
</tr>
<tr>
<td>Column Packet rate</td>
<td>15,7 MPps</td>
<td>19,9 MPps</td>
</tr>
<tr>
<td>Column bandwidth</td>
<td>443,11 Mbps</td>
<td>510,18 Mbps</td>
</tr>
</tbody>
</table>

- Smart Clustering reduces Column BW of 67Mbps!
- PRELIMINARY Pixel consumption per pixel, w/ Smart Clustering:
 - 10.8 mW cm\(^{-2}\) @100 MHz cm\(^{-2}\)
 - 7.9 mW cm\(^{-2}\) @10 MHz cm\(^{-2}\)
ARCADIA - 2048-pix Column Timing

* Signals best propagated with repeaters every ~64 pixels (1.6mm) with BUF_X4/BUF_X8
* Does not take into account internal propagation to sink! Conservative measurement
* ARCADIA has signal repeaters every 800um in its 512-pix column (12.8mm tall)
* Achieve ~12.5ns propagation delay on a 2048-pix Column
Each Column (32x512 pixels) has a readout BW of 443Mbps

Link is DC-balanced via 8b10b encoding, which increase BW to 553Mbps

Column data is sent out via dedicated 320MHz DDR Serializers

For space applications, which has very low hit rates, the packets from all the columns are sent via a single serializer, while the others are turned off along with their LVDS links.
ARCADIA: ongoing activities

- **TCAD 2D/3D sensor simulation:** geometry, p-well spacing, node capacitance, transient

- **CMOS Analogue IP block design:** continuous and discrete-time VFE design; 12-bit SAR ADC IP-core, custom LVDS Tx/Rx: LF11is prototyping run September 2019

- **CMOS Digital IP block design and Chip Integration:**
 - SPI and Serialiser (8b/10b) soft-IP Cores 110nm ready
 - Full matrix integration ready, periphery ongoing

- **Data acquisition:** started development of DAQ for the full-chip

- **Characterisation:** laser and microbeam tests with 100-300 µm pseudo-matrices @RBI (Zagreb), tests with Fe^{55}, new laser test setup (spot size 8 µm) under construction

- **1st engineering run (dedicated front/back-side maskset):** mid-2020
Progress on Arcadia

Thank You for your time!