FCC Software Status

3rd FCC Physics Week 2020

Jan 14, 2020
G Ganis, C Helsens
CERN-EP
Software Requirements to support FCC studies

● Detector design studies
 ○ Flexibility
 ○ Ideal detector descriptions
 ○ Open to evolution

● Broad range of event complexity
 ○ $e^+e^- \text{ vs } pp \text{ vs } ep$

● Need to support physics and detector studies
 ○ Parameterised, fast and full simulation

● Aim to de-duplicate efforts
 ○ One software stack to support all the cases,
 all detector concepts and future (proto-)collaborations
Current software met basic requirements at a sufficient level to support CDRs Physics studies.

Next level of detail required for the Technical Design Report, with a special focus on FCC-ee.
Adopted approach

- **Strategy**
 - Adapt existing solutions from LHC
 - Look at ongoing common projects (AIDA)
 - Invest in streamlining of the event data model

- **Future: towards a common software for future experiments**
 - [Bologna workshop, June 2019](#)
 - Present: LHC, ILC, CLIC, FCC, CEPC, SCTF, HSF
 - Agreed to:
 - Investigate the possibility to have a common event data model (EDM4hep)
 - Contribute to the development of a Common Turnkey Software Stack (Key4hep)
 - One framework (Gaudi best candidate), DD4hep, EDM4hep, Geant4, ROOT, ...
 - Follow-up in [Hong Kong, 17 January 2020](#)
FCC Software Components
Components overview

- Event Data Model
- Detector Description
- Generation / Simulation
- Reconstruction
- Analysis

Software Framework

Workload and Data Management

Software Infrastructure
Components overview

Software Framework
- PODIO: Event Data Model
- DD4HEP: Detector Description
- GenSer, G4, Delphes: Generation / Simulation
- ACTS, TrickTrack: Reconstruction
- HEPPY: Analysis
- Gaudi

Workload and Data Management
- Spack
- LCG stacks
- HT-Condor
- EOS
- CernVM-FS

Software Infrastructure

FCC Software Status, FCC Physics Week 2020
Event Data Model
Event Data Model

- **Current FCC-EDM**
 - Event/Run: EventInfo
 - MC truth: MCParticle, GenVertex, GenJet
 - Tracker: Track (PositionedTrackHit, TrackCluster, TrackState)
 - Calorimeter: CaloCluster (PositionedCaloHit)
 - Associations: ParticleMCParticleAssociation, DigiTrackHitAssociation, CaloHitAssociation, CaloHitMCParticleAssociation
 - High-Level objects: TaggedParticle, Vertex (WeightedTrack), TaggedJet, ResolvedJet, MET

- **Tuned on the needs of FCC-hh**
 - High-level objects of LHC inspiration

- **TaggedParticle contains cross association between tracks and calo objects**

FCC Software Status, FCC Physics Week 2020
EDM4HEP: attempt to have a common EDM for FCC, LC, CEPC, OpenData,...

Task force meeting every 2-4 weeks since July 2019
- Representatives from all future collider projects and LHC

Started from comparing/merging FCC-EDM and LCIO (used by LC and CEPC)
- Git repository available at EDM4hep

Based on PODIO high-level EDM generator
- As FCC-EDM

Goal is to have a usable version by Q1/2020
- Dedicated session at the Hong-Kong IAS mini-workshop next Friday
Software Framework
Software Framework: Gaudi-based

- Framework toolkit to provide required interfaces and services to build HEP experiment frameworks
 - Opensource project and experiment independent

- Data processing framework designed to manage experiment workflows
 - Separate data and algorithms; well defined interfaces
 - User’s code encapsulated in Algorithm’s, Tool’s / Interface’s, Service’s
 - Different persistent and transient views of data
 - C++, with Python configuration

- Originating from LHCb, Gaudi is adopted also by ATLAS
 - Actively developed to face LHC Run 3 and Run 4 challenges (high PU)

- Using the latest Gaudi version (v32r2).
Typical workflows
Overview

FCCSW

MC Generators
- LHEf
- HepEvt / HepMC
- Pythia8 Interface

MDI codes
- HepEvt / HepMC reader
- MDI format readers

MDI formats

Pileup / MDI overlay
- G4 Full / Fast

Reconstruction

Analysis

DD4hep Geometry

FCC Software Status, FCC Physics Week 2020
Monte Carlo Generators

- MC Generators are an essential ingredient to understand the potential of a detector
 - Need to simulate precisely enough both signal and backgrounds
- Backgrounds
 - Unwanted collisions products / signals
 - Beam-related backgrounds (SR, …)
 - Beam unrelated backgrounds (cosmic rays, …)
- Many programs exists to simulate the relevant processes
 - Session dedicated to generators for collision products this afternoon in 220/R-001
Monte Carlo Generators and FCCSW

- Generators repository: GenSer @ LCG software stacks
 - Generator Service hosted by EP-SFT
 Collaboration with the authors and with the LHC experiments to prepare validated code for communities at the LHC
 - Actively used by ATLAS, LHCb, SWAN and some SME experiments
 - Deployed via CernVM-FS

- MC generators are typically standalone codes
 - Noticeable exception is Pythia8, which provides a callable interface

- FCCSW interoperates MC generators mostly through common data formats
 - HepMC, LHEF
 - Pythia8 used to read LHEF files
MC Generators: status and areas of work

● GenSer generators palette biased towards LHC
 ○ Good for FCC-hh, incomplete for FCC-ee

● General purpose generators such as Pythia8, Whizard, MadGraph5 available
 ○ But we need to get experience on how to use them effectively for FCC-ee

● Integration of KKMC and BHLUMI in GenSer well advanced
 ○ Wrappers to produce HepMC and/or LHEF output required

● Similar work will be needed for MCSANC, BabaYaga, ...

Contributions welcome/required on interfacing and testing
Experience needed for interfacing: FORTRAN, FORTRAN&C++ interplay
For testing: ability/willingness to understand settings of a given generator
(Beam- and) MDI-related backgrounds are source of systematics
 ○ Need to be controlled as precisely as possible
 ○ Critical aspect, for performance, is detector occupancy
 ■ Possibly also radiation damage

Non-exhaustive list of programs to calculate these backgrounds
 ○ MDISim: *Synchtron Radiation, Single beam induced backgrounds*
 ○ SYNC_BKG, SYNRAD+: *Synchtron Radiation*
 ○ GuineaPig++: *IP backgrounds, (In)coherent Pairs Creation, γγ to hadrons*
 ○ Pythia8: *γγ to hadrons*
 ○ BBBrem+SAD: *Radiative Bhabhas*

Simplest and solid solution for integrating the MDI calculations in FCCSW is through shared data formats
MDI @ FCCSW Workflow

- MDI code provides sets of events with the 4-vectors and vertex of the relevant particles
 - γ’s for SR; e+e- pairs, hadrons for IP processes, ...
 - May include the interaction in the beam-pipe (as in MDISim)

- Evaluation of detector occupancy in FCCSW
 - Through interaction of MDI particles in the detector
 - Through overlay of MDI events to “signal” events for a more detailed background simulation
 - This may also be done with a weighted mixture of MDI processes
MDI integration: status and areas of work

- Agreement to define shared documented data formats
 - Work not started yet
- GuineaPig++ interfaced to iLCSoft
 - May be used as source of inspiration
- Event overlay in FCCSW
 - Same technology used for pileUP
 - Need to be tested and validated

Contributions required to all the above items
Experience required: file formats, FORTRAN, C++
Simulation

● Geant4
 ○ Gaudi components exists to create
 ■ User Actions
 ■ Regions
 ■ Sensitive detectors
 ■ Selective output options
 ○ Mixing fast and full G4 simulation possible
 ■ SimG4Full / SimG4Fast

● Delphes
 ○ Gaudi interface
 ■ FCC EDM output
FCC detector palette in DD4hep: FCC-hh

FCC-hh baseline

- Barrel, Endcap, Forward
- Beam Pipe, Shielding, Magnet solenoid
- Silicon Tracker
- LAr ECal, Tile HCal
- Muon System
FCC detector palette in DD4hep: FCC-ee

FCC-ee IDEA

- Beam Pipe, Beam instrumentation
- Lumical, HOM Absorber
- Vertex detector
- Drift Chamber
- Dual Readout Calorimeter
- Muon System

DR calo required support for optical properties in DD4hep available in the latest version shipped with FCCSW
FCC detector palette in DD4hep: FCC-ee

Possible alternatives for FCC-ee

- "IDEA" with reduced version of LAr ECal + Tile HCal
 - First DD4hep description available for testing

- CLD
 - Geometry description in DD4hep exists: https://github.com/iLCSoft/lcgeo
 - Requires some integration for usage in FCCSW

Contributions welcome/required on:
- DD4hep description for the IDEA DR calo, including digitization; muon system
- Enabling of CLD in FCCSW

Experience needed: familiarity/willingness to learn: DD4hep, detector geometry, Geant 4 simulation
FCC detector palette for Delphes

- Validated
 - FCC-hh baseline
 - HL-HELHC baseline

- Available for FCC-ee (need adjustment in the steering code)
 - IDEA
 - CLICDet

Possible contributions: testing, validation, fine tuning of existing cards; scripts or tool to easy variate relevant dimensions

Experience needed: familiarity with Delphes, Gaudi, simulation
Reconstruction

● **Challenges: algorithm detector concept independent**
 ○ Full flexibility, avoid duplication

● **Tracking**
 ○ Track seeding (Silicon tracker), Hough Transform (drift chambers)
 ○ Under development / investigation: ACTS integration, Conformal tracking

● **Calorimeters**
 ○ Sliding window (rectangular/ellipse), Topo-clustering
 ○ Under development / investigation: ML techniques

Possible contributions: vertexing, ACTS, ML, particle ID
Experience needed: familiarity with reconstruction algorithms, Gaudi, C++
Considerations for Physics Analyses

- **HEPPY**: High Energy Physics with PYthon
 - Modular python framework for the analysis of collision events
 - Developed and still used for CMS

- **In FCCSW HEPPY is used to**
 - Process EDM events, apply-preselection, produce a flat and light ROOT ntupler
 - Analyse the ROOT ntupler
 - Not the only code used for this purpose

- **Flexible but slow**
 - Plan to move to a C++-based analysis framework, e.g. RDataFrame

Possible contributions: develop HEPPY replacement based on RDataFrame or other fast technology
Experience needed: familiarity with ROOT and RDataFrame; advanced Python
Infrastructure, OS support, resources
Software Infrastructure

- **Typical HEP development workflow**
- **Deliverables**
 - FCCSW
 - Externals: FCCSW specific dependencies
 - Based on LCG releases provided by EP-SFT
- **Builds (nightlies, releases) managed by Spack package manager**
 - Good feedback to HSF packaging WG
- **Deployment on dedicated CernVM-FS repositories**
 - `/cvmfs/fcc.cern.ch/`, `/cvmfs/fcc-nightlies.cern.ch/`
OS support

- Currently CERN-centric
- Support for the default version running on lxplus
 - CentOS 7, gcc 8
- VM, based on CernVM, available to recreate equivalent environment
 - Works from everywhere but speeds depends on the network
- Access via notebooks (SWAN) also possible
 - Being used for tutorials

Possible contributions: provide support for other OSs (Ubuntu, MacOSX, …)
Experience needed: familiarity with build systems, linux, …
CERN resources and access policy

- CERN resources are available to members of institutes having signed the [Memorandum of Understanding and its addendum](#).

- **EOS areas for data or large files**: /eos/experiment/fcc
 - Current quota: 400 TB (can be increased)
 - E-group membership: **fcc-eos-access** (and alike)
 - Dedicated areas for ee, hh, eh, helhc, users
 - Plan to deprecate ‘users’: each CERN user has 1 TB at /eos/user/u/username
 - Needs to be enabled on Account Management page

- **EOS areas for shared files**: /eos/project/f/fccsw-web/www
 - Also accessible also via web

- **Dedicated queue on LXBATCH**
 - AccountingGroup = "group_u_FCC.local_gen" (on HTCondor)
 - E-group membership: **fcc-experiments-comp**
About Key4HEP
Key4HEP

- Depends **crucially** on EDM4HEP
 - Sets the chronological order

- **Full-time fellow just started now** (Jan 2020)
 - Another fellow working through CREMIN PLUS soon (Mar 2020)

- **Possible contribution from EU projects**
 - AIDA++, MSCA-ITN SPIRAL-NET

- Possibly rapid development when EDM4HEP is available
 - Key4HEP core ≈ FCCSW core + EDM4HEP
 - Algorithms (FCCSW, other) adapted to EDM4HEP can then be used

- **Deliver early and often approach**
Connection with Key4HEP

<table>
<thead>
<tr>
<th>FCCSW</th>
<th>Detector Description</th>
<th>Key4hep</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific detector</td>
<td>IDEA, CLiCDP, ...</td>
<td>Evt/Bkg Gen (Pythia8, MadGraph, GuineaPig, MDISim)</td>
<td>TENTATIVE, RDF, PyHEP, ...</td>
</tr>
<tr>
<td>Specific algorithms</td>
<td>Sil. Track. TPC, DREAM, ...</td>
<td>Simulation (G4 Full, G4 Fast, Delphes)</td>
<td>TrickTrack, ACTS, Conf. Track.</td>
</tr>
<tr>
<td>Specific effects</td>
<td>DD4hep</td>
<td>Reconstruction (TrickTrack)</td>
<td>ROOT</td>
</tr>
<tr>
<td>eg Pile-Up</td>
<td>Gaudi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>EDM4hep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload and Data Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key4hep Software Infrastructure</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FCC Software Status, FCC Physics Week 2020
After-CDR for FCCSW

- **Current approach** seems **adequate** to fulfill the requirements
- **Contribution from FCC institutes** is **essential** and very **welcome**
 - Interested people should manifest themselves and pick-up an area of work
 - Public software coordination meetings will be resumed soon (see next)
- **Foster activities** such as **Key4HEP**, which formalize and extend FCCSW approach
 - Exchange / share effort within the community
Areas of work summary

- MC generators interfacing
- MC generators testing
- MDI shared formats
- GuineaPig++ integration
- Overlay of MDI/signal events
- IDEA DR Calo full simulation
- IDEA Muon system full sim
- Validation of LAr Ecal for FCC-ee
- Enabling of CLD in FCCSW
- Validation/testing of Delphes cards
- Vertex reconstruction
- ACTS integration
- ML for calo reconstruction
- e, mu, tau, c, b tagging / ID
- RDataFrame based analysis
- Porting to other OSs
- ...

FCC Software Status, FCC Physics Week 2020
Software Coordination Meetings

Open software coordination meeting will restart on 31 January 2020

- **Frequency:** Bi-weekly meetings with remote connection
- **Time slot:** Friday morning 9h-11h
- **Location:** 40/R-B10
- **Announced on** fcc-experiment-sw-dev
Summary

- The FCC software stack has been assembled using as much as possible existing components
 - Served well the purposes of the CDRs

- Started a new phase of development to support more detailed studies in view of the TDRs, in particular for e^+e^-

- Areas of work identified

- Follow closely, participate and collaborate new common activities {Key4hep, EDM4hep}
Thank you!

- Web site https://cern.ch/fccsw
Hands-on tutorial tomorrow!

- Location: 4/3-006 (this room)
- Time slots: 9h-13h, 14h-17h
- Program: Roughly the same as in October SW Workshop
 1. Running FCCSW standalone
 2. Example of Physics Analysis (ZH)
 3. Delphes cards optimization
 4. Tracking with Drift Chamber

- Bring your own laptop!
Backup
Event Data Model and PODIO

- **LHC experiments / LC studies solutions suffering (partly) from**
 - Overly complex data models with deep object-hierarchies
 - Unfavorable I/O performance

- **PODIO: an EDM toolkit (AIDA2020 project)**
 - Plain Old Data, automatic code generation, support for different backends
 - Keep memory model simple, enabling fast I/O and efficient vectorization
 - Consistent / homogeneous implementation, minimizes mistakes
 - High-level description in YAML format
 - Three-layers
 - User: handles objects and collections
 - Object: transient, relations between objects
 - POD: actual data structures
 - Follow-up for next AIDA being prepared
 - Schema evolution, memory and I/O optimizations
Detector Description: DD4hep

- **Generic detector view appropriate to support**
 - Simulation, reconstruction, analysis, ...

- **Design goals**
 - Complete detector description
 - Single source of information
 - Support all stages of the experiment
 - Easy of use

- Part of AIDA2020

- Used by CLIC, ILC, FCC, LHCb, CMS, SCT
Fast / Full Simulation Interplay

Example:
Higgs self-coupling
@ FCC-hh
Gaudi and FCCSW

- Python scripts to configure tools and algorithms and define their processing order

```bash
$fccrun

./Examples/options/geant_fullsim_fcces_pgun.py
  --energyMin=10  --energyMax=10  --particleName="mu-"
  --n=1000  --filename=fcces_idea_mu.root
```

- Each algorithm defines its parameters which can be overwritten of the command line
Calo Reconstruction Example

- Single 100 GeV e- reconstructed by sliding window

- Single 100 GeV pion in 8+10 layers of the E+HCal reconstructed by topo-cluster