

AIDA++ Open Meeting

Involving Industry in AIDA++ and beyond

T. Bergauer

5 Sept 2019

H2020 Innovation Pilots

- Background: In 2020 the EC will launch a new instrument (Innovation Pilot) for advanced communities that have been supported under H2020 and previous Framework Programmes with three or more Integrating Activities, and have reached a high degree of integration at European level. [....]

Special demand of HEP for custom products

- Special operation conditions
 - Silicon chips outside "usual" operation temperatures
 - Silicon detectors in harsh radiation field
- No "industrial use case" at all, e.g. GEM foils

Different "life span" of experiments demand of experiments

- Typical industrial product:
 2 years R&D/design → 10 years production with continuous yield/quality improvements
- HEP "product": 10 years R&D/design → 2 years production
 → 10 years operation

AUSTRIAN ACADEMY OF SCIENCES

Demand on Si Sensors

Silicon surface

- Today: Up to 200 m² (CMS)
- Similar size for the Phase-II Upgrade of CMS and ATLAS (~200 m² each)
- Significant increase for CMS HGCal ~ 600 m²
- Longer Term: ILC, CLIC, CALICE, FCC, Chinese projects,...

Wafer Size

- NA11 started with 2" and 3"
- Today 6" (150 mm) is standard (used by LHC Experiments)
- → Introduced in the Industry in the 80ies!

Vendors known to the HEP community

- Small/medium-scale Production (O(10-100) wafers per year)
 - Several institutes and companies
 - 6" available at many sites
 - Broad spectra of quality and price

- For large scale production (O(10k) wafers per year)
 - Only one producer
 - No European company

Dual Source Strategy

- To have (at least) a second option which can immediately take over in case of problems is in principle not a bad idea
 - Imagine: quality issues, bankruptcy, earthquakes,...

How to "talk" to industry?

Make company understand special situation of HEP:

- Often "one-time orders" after long R&D
 - Revenue is not a monetary aspect alone
 - Need to show other advantages (see later)
- No single/simple "decision making":
 - Company: CEO/management who decides everything
 - HEP: Taxpayers money from several funding agencies; complicated and long-lasting decision making
 - There is also no "CERN" manager; there are experiments with own bodies
- No face-to-face price negotiations
 - CERN procurement rules: Market Survey → Invitation to Tender → Competitive bidding (alignment rule for member/non-member states) is generally unknown to companies in general
- Schedule driven by accelerator/experiments
 - No time-to-market driven schedule

Whom to talk to?

Top-down approach

- Google search for suitable company
- Contact company through sales representative
- Project is driven by sales/business unit

Bottom-up approach

- Know (personally) engineers and/or policymakers with the power to start new R&D inside the company
- Establish joint R&D project
 - E.g. design/verification by HEP, production by company
- Several constraints have to fit (e.g. workload of company driven by global economy cycles)
- Once project is large "business people" will start to intervene

Non-monetary revenue

A company (usually) cannot get rich with HEP orders only

R&D costs too high, too little "series production"

Need to show other advantages:

- Good reputation when working with science (CERN in particular)
 - Can be used by company for advertisements,...
- Access to highly educated students as possible future employees
- Access to new technologies and characterization facilities (e.g. irradiation facilities)
- **Most important:** find other technologies as spin-off from your project to get money from, e.g. automotive, medical imaging.....

Intellectual Property

Usually science and industry are completely the opposite:

- **HEP:** disseminate results in publications ("publish or perish")
- **Industry: competition with other** companies
 - Intellectual Property (IP) as competitive advantages

Detector R&D is somewhere in-between because of technology-oriented concepts → we have to cope with both approaches

Intellectual property can be valuable and priced

It can be sold, leased, mortgaged

Research Basic

Detector R&D

Industry

IP Dictionary

"Background" IP

- Pre-existing IP held by participants prior to the start of the project
- Needed for carrying out the action, e.g. silicon processing
- Information exchange under Non-Disclosure Agreement (NDA)
 - Usually a "simple" contract that information or samples must not disclosed
 - Application: NDAs typically cover process details, design rules or libraries with "IP blocks" the company need to provide to allow us to design a silicon sensor or ASIC

"Foreground" IP

- Typically the results of the joint development
- Ownership:
 - Model 1: "Who generates owns"
 - Model 2: Every result is jointly owned
- Model 2 need contractual statements about licensing and royalty (use fee)

Creating Win-Win-Situations

- How can results made accessible to a broader (scientific) public while maintaining also competitive advantages for your business partner?
 - Find balance between publications and business secrets/patents
- What is the commercialization potential?
 - Find other types of applications which could potentially give high revenues

Detector Development with Infineon AN EXAMPLE

Company profile (Infineon

- Infineon is one of the major players in the semiconductor business
 - 40,000 employees worldwide
- Main target markets
 - Automotive, Power, Chip Card
- Villach (Austria): R&D and "frontend" production
 - 4,200 employees (1,800 in R&D)
 - Production in clean room of class 1 with 20,000 m² area

Infineon and HEPHY

- In April 2009 a small delegation from HEPHY visited Infineon Villach
 - Privately organized by me together with former HEPHY colleague who moved to Infineon earlier
 - We enjoyed a tour of the production facilities
- We discussed and agreed on the possibility of a joint development
 - At that time the production was running at 20% load because of economical crisis
- Since the beginning of 2010 we held weekly telephone conferences
 - We were discussing all technical details
 directly with the engineers

Collaboration Details

- 2011: First milestone: first layout and process plan set up
- **2012**: First production of 6" p-on-n sensors
 - Goal: re-produce the current CMS tracker sensors
- 2014: Started to work on 8" n-in-p process for CMS tracker phase II upgrade
 - First 8" Si-strip sensors for HEP
 - 2S sensors for CMS tracker module prototypes
- 2015: Started development of 8" hexagonal pad sensors for CMS High-granularity calorimeter
 - Driving the effort of moving to 8" sensors as baseline for TDR
- 2016/17: Infineon participated in common ATLAS/CMS
 Market survey for the delivery of strip and pad detectors for
 Phase-II Upgrades
- 2018: Infineon decided to quit the development because of economic reasons (3)

6" strips

8" p-type strips

- The project started from the engineers in an bottom-up approach
 - Manpower at IFX was kept at minimum in the first few years
 - Spare time hobby project of two three engineers with support from middle to top management
 - Only since 2015 the "business unit" was involved and main coordinator at IFX was promoted to lead the project full time -> creating costs
 - Regular visits of CMS representatives to Infineon
- Task sharing
 - HEPHY: Design, TCAD-Simulations, electrical characterization, beam tests, irradiation, dissemination by publications, costs of wafers
 - Infineon: Set-up of production flow, actual processing (and associated costs)

Reason for premature end of collaboration:

- Since they treat our project as "one-time order" all development costs needs to be taken into account for calculating their business case (need to make profit)
 - Development costs increased to address the only remaining problem (IV breakdowns)
 - The costs of the sensors increased by an factor of 4 w.r.t original CMS planning
- Infineon decided to quit the development program of HEP sensors for economic reasons in summer 2018
 - Unfortunate decision after 9 years of fruitful collaboration
 - Nevertheless the project was a success
 - Project was very visible within local funding agencies and academic environment
 - · We learned a lot about commercial production of silicon devices
 - Infineon gained insights in HEP community, device irradiations and received highly trained manpower

Lessons learned:

- Start your project in bottom-up approach and talk to engineers rather than business men
- Keep your project on a technical basis as a joint development project as long as possible before economist take over
 - Be fast in identifying possible problems and find mitigation measures early
- Find (direct!) alternative applications of the product which can bring additional money into the project

The End.

AUSTRIAN ACADEMY OF SCIENCES

