

AIDA++ Open Meeting: Irradiation & Characterization Facilities

Fernando Arteche (ITAINNOVA), Gregor Kramberger (JSI) & <u>Federico Ravotti</u> (CERN)

CERN, 04 September 2019

Outline

- Introduction
- Description of the received Eol's:
 - # 8: Wireless system of portable radiation monitors for distributed dose control
 - # 13: Upgrades of EMC test infrastructure: susceptibility and emissions test
 - # 14: GIF++ gas system development and operation
 - # 30: Integrated traceability and residual activation measurement of irradiated samples
 - # 38: Silicon detectors at fluences above 10¹⁷ n/cm²
 - # 116: Upgrade of irradiation infrastructures based on micro-beams and gamma irradiation
 - # 123: Instrumentation and dosimetry upgrade for irradiation facilities
 - # 133: Development of common data management and knowledge tools for irradiation facilities
 - # 137: Self powered particle detectors for beam-on target sec. particles fluence measurement
 - # 138: Radiation-hard beam quality monitoring for hadron cancer therapy
- Summary Tables
- Conclusion

Introduction

- Topic: Irradiation & Characterization Facilities
 - 10 Fol's received
 - 3 concerning new activities
 - 7 concerning follow-up of AIDA-2020 activities (WP11, WP12, WP15)
 - 2 additional spotted as potentially relevant
- Discussions within WP15 contributed to define the framework:
 - Support existing infrastructures
 - facilities & systems
 - incentive to leverage additional support from the participating institutes
 - Upgrade instrumentation & dosimetry equipment
 - further improve AIDA-2020 deliverables with innovative solutions
 - Develop common tools
 - apply the test-beam telescopes "concept" to the irradiation facilities
 - Upgrade the test-beam telescopes

test-beam

• to meet the requirements of the next-generation detectors facilities topic

Disclaimers

- Eol's information presented in the following slides:
 - were distributed to our topic by the PPT
 - are summarized in two lines only: apologies if not fully accurate!
- Include sensor/instrument/dosimetry technologies that might:
 - be further developed to improve the facilities operation
 - have chances to work (often) in extremely harsh radiation environments
 - ... do not fit better in other AIDA++ topics (e.g. gaseous detectors, KT, etc.)
- Include Machine Learning (ML)-related activities:
 - for image and text classification, aiming to optimize the facilities & improve the users operation
 - ... do not involve ML for HEP data analysis or simulations

Eol #8 - Wireless system of portable radiation monitors for distributed dose control

- Participants:
 - INRE, Bulgaria (P. laydjiev)
- Deliverables:
 - develop a portable wireless system for TID (RADMON) and dose-rate monitors (integrating SiPM-based scintillators in addition to Geiger probes)
- Innovative aspects:
 - evolution of a hard-wired system developed for GIF++ in AIDA-2020
 - portable, easy to position (wireless) with higher sensitivity (new sensors)
- Industrial partners:
 - none
- Budget:
 - 300 k€ (EC contribution: 100 k€)
- Possible Synergies:
 - other Eol's about wireless systems (#30) or topic for "KT and outreach"?

Eol #13 - Upgrades of EMC test infrastructure: susceptibility and emissions test

- Participants:
 - ITAINNOVA (F. Arteche), Spain IPHC-CNRS, France
- Deliverables:
 - develop a test bench to measure the transfer function of HEP detectors
 - portable setup to measure power supplies noise emissions under irradiation
- Innovative aspects:
 - provides new EMC test capabilities also combining EMC/radiation tests
 - improve/ensure the access to existent EMC facilities (extension of AIDA-2020)
- Industrial partners:
 - none (potential interest in the noise emissions setup development)
- Budget:
 - 215 k€ (EC contribution: 75 k€)
- Possible Synergies:
 - noise emissions setup might be used by other irradiation facilities

Eol #14 - GIF++ gas system development and operation

- Participants:
 - CERN (R. Guida), Switzerland
- Deliverables:
 - improve, operate and maintain the GIF++ gas system infrastructure at CERN: commission a new gas recirculation system, implement standardized gas interlock signals and an exhaust system for flammable gas mixtures
- Innovative aspects:
 - improves an existent facility used for R&D (extension of AIDA-2020)
- Industrial partners:
 - none
- Budget:
 - 400 k€ (EC contribution: 130 k€)
- Possible Synergies:
 - other Eol's improving service/tools for facilities (#13 or #133)

Eol #30 - Integrated traceability and residual activation measurement of irradiated samples

- Participants:
 - ENEA (S. Fiore) CAEN, Italy CERN, Switzerland
- Deliverables:
 - a prototype of an integrated system to manage residual activation (γ -spectra) & traceability information of irradiated objects at ENEA-FNG and CERN-IRRAD
- Innovative aspects:
 - improves facilities operation by extending SW tools developed in AIDA-2020
 - qualifies RFIDs for usage in radiation environment
- Industrial partners:
 - 1 (CAEN, Italy)
- Budget:
 - 330 k€ (EC contribution: 130 k€)
- Possible Synergies:
 - other EoI for the improvement of the IRRAD Data Manager tool (#133)

Eol #38 - Silicon detectors at fluences above 10¹⁷ n/cm²

- Participants:
 - JSI (M. Mikuz), SI CERN, CH Un. of Cantabria CNM, ES INFN (TO), IT
- Deliverables:
 - perform a set of systematic studies to validate the use of silicon as a sensor material in very high radiation environment (particle fluence >10¹⁷ n_{eq}/cm²)
- Innovative aspects:
 - improve the knowledge about the usage of Si as material for future trackers
- Industrial partners:
 - none
- Budget:
 - 900 k€ (EC contribution: 300 k€)
- Possible Synergies:
 - with other Eol's belonging to the topic "Hybrid silicon" ?

Eol #116 - Upgrade of irradiation infrastructures based on microbeams and gamma irradiation

- Participants:
 - RBI (S. Fazinic), Croatia PSI, Switzerland
- Deliverables:
 - upgrade the RBI accelerator and ⁶⁰Co facilities for studies on MAPS sensors (provided by PSI): new micro beam control, cold box, DUT position. system, ...
- Innovative aspects:
 - improve knowledge on MAPS; new services for radiation hardness studies
- Industrial partners:
 - none
- Budget:
 - 598 k€ (EC contribution: 198 k€)
- Possible Synergies:
 - MAPS studies: other Eol's belonging to the topic "Hybrid silicon" ? (facilities upgrade required to perform the MAPS studies)

Eol #123 – Instrumentation and dosimetry upgrade for irradiation facilities

• Participants:

(*) "collaborators" only

- CERN (F. Ravotti) EPFL, CH MINES ParisTech, FR EU Irradiation Facilities^(*)
- Deliverables:
 - upgrade the IRRAD Beam Profile Monitor (BPM) with ML-based pattern recognition algorithms & perform NIEL (inter)calibration of CERN/EU facilities
- Innovative aspects:
 - improve BPM system (AIDA-2020) with ML-techniques (+ beam quality)
 - provide standard devices/procedures for EU facilities (+ dosimetry accuracy)
- Industrial partners:
 - none
- Budget:
 - 555 k€ (EC contribution: 185 k€)
- Possible Synergies:
 - other BI Eol's (#137, #138), ATTRACT consortium, EU Irradiation Facilities

Eol #133 – Development of common data management and knowledge tools for irradiation facilities

- Participants:
 - CERN (F. Ravotti) EPFL, CH MINES ParisTech, FR NEC Labs EU, DE
- Deliverables:
 - upgrade data manager system (AIDA-2020) for other facilities (GIF++, extern.)
 - develop ML-based recommender (M&O) and data classifier tools (post-irrad.)
- Innovative aspects:
 - enhance facilities performance improving data handling & sharing test results
 - improving facilities/systems usability with new (common) software tools
- Industrial partners:
 - 1 (NEC Labs Europe, DE)
- Budget:
 - 660 k€ (EC contribution: 220 k€)
- Possible Synergies:
 - other EoI involving data management/handling/traceability (#30)

Eol #137 – Self powered particle detectors for beam-on target sec. particles fluence measurement

• Participants:

(*)contact person to be defined at CERN

- ENEA (S. Fiore), Italy CERN^(*), Switzerland
- Deliverables:
 - design a novel Self Powered Particle Detector for mixed-fields (MC simulat.), produce prototypes and test them close to production targets of accelerators
- Innovative aspects:
 - improves existing technology: Self Powered Neutron Detectors (SPND)
 - help to diagnose targets malfunctioning/on-line fluence monitor for samples
- Industrial partners:
 - none
- Budget:
 - 520 k€ (EC contribution: 170 k€)
- Possible Synergies:
 - other Eol's about beam instrumentation/dosimetry (#123, #138)

Eol #138 – Radiation-hard beam quality monitoring for hadron cancer therapy

- Participants:
 - HEPHY (T. Bergauer) MedAustron Cividec TU Wien, Austria
- Deliverables:
 - develop a profile monitor based on CMOS detectors and radhard intensity monitor based on diamond coupled to ASIC for low-intensity proton beams
- Innovative aspects:
 - improves beam quality for clinical (and non-clinical) purposes, enabling / making easier the setup, commissioning and operation of low-flux beams
- Industrial partners:
 - 2 (MedAustron and Cividec)
- Budget:
 - 1050 k€ (EC contribution: 350 k€)
- Possible Synergies:
 - other Eol's about beam instrumentation and dosimetry (#123, #137)

Support Existing Infrastructures

Eol #	TITLE	LEADING PARTNER	FACILITY TYPE	INDUST. PARTNERS	RELEVANCE / INTEREST	INNOVATIONS / COMMENTS
13	Upgrades of EMC test infrastructure: susceptibility and emissions test	ITAINNOVA (F. Arteche)	Characterization	NO (might be)	HEP detector upgrades & external communities	Improves existent facilities with new test capabilities. Access to EMC tests beyond AIDA-2020
14	GIF++ gas system development and operation	CERN (R. Guida)	Characterization (Irradiation)	NO	HEP detector upgrades / HL-LHC, FCC	Improves an existent facility widely used in HEP for detectors R&D
66	A novel tool for 3D semiconductor sensor characterization: two-photon absorption TCT	CERN (M. Moll)	Characterization	YES	HEP detector upgrades (new detectors & simulation tools)	Improving existing technology Belonging to another topic

Develop Common Tools

EoI #	TITLE	LEADING PARTNER	FACILITY TYPE	INDUST. PARTNERS	RELEVANCE / INTEREST	INNOVATIONS / COMMENTS
30	Integrated traceability and residual activation measurement of irradiated samples	ENEA (S. Fiore)	Irradiation	YES	Facilities in HEP / external applications (nuclear processing, medical,)	New application: qualifies RFIDs and extends integrated traceability system (SW/HW) making it available to the community/industry
133	Development of common data management and knowledge tools for irradiation facilities	CERN (F. Ravotti)	Irradiation	YES	Facilities in HEP & worldwide / external applications involving data management	Improves with ML and extend an existent system (AIDA-2020) for handling facilities operation. New application: sharing irradiation experiments data

Upgrade Instrument. & Dosimetry Equipment

Eol #	TITLE	LEADING PARTNER	FACILITY TYPE	INDUST. PARTNERS	RELEVANCE / INTEREST	INNOVATIONS / COMMENTS
8	Wireless system of portable radiation monitors for distributed dose control	INRE (P. laydjiev)	Irradiation (Dosimetry?)	NO	Nuclear facilities, beyond HEP irradiation facilities	Improves a system developed for GIF++ in AIDA-2020. Best fits the topic "KT/outreach"?
123	Instrumentation and dosimetry upgrade for irradiation facilities	CERN (F. Ravotti)	Irradiation	NO	HEP detector upgrades / HL-LHC, FCC and wider user community testing at EU- facilities	Improves an existent system (and quality of irradiation tests) by applying ML-techniques. New application: inter-calibration of EU-facilities
137	Self powered particle detectors for beam-on target secondary particles fluence measurement	ENEA (S. Fiore)	Irradiation	NO	HEP detector and accelerator upgrades / HL-LHC, FCC	Improves an existing technology (nuclear field) and applies it to accelerator facilities (new application)

Upgrade Instrument. & Dosimetry Equipment

... / ..

Eol #	TITLE	LEADING PARTNER	FACILITY TYPE	INDUST. PARTNERS	RELEVANCE / INTEREST	INNOVATIONS / COMMENTS
138	Radiation-hard beam quality monitoring for hadron cancer therapy	HEPHY (T. Bergauer)	Irradiation	YES	Facilities for components qualification, medical, beyond HEP applications	Improves accelerator beam diagnostic with a novel development based on existent types of detector / electronic technologies
117	Beam diagnostics in high radiation environments	CEA (L. Segui)	Irradiation	? (not clear)	High power future linear accelerators	New application of gaseous detectors and ML-techniques (for data analysis?). Belonging to another topic

Other Eol's

EoI #	TITLE	LEADING PARTNER	FACILITY TYPE	INDUST. PARTNERS	RELEVANCE / INTEREST	INNOVATIONS / COMMENTS
38	Silicon detectors at fluences above 10 ¹⁷ n/cm ²	JSI (M. Mikuz)	/ (project not directly linked to facilities)	NO	HEP detector upgrades / HL-LHC, FCC	Improves the knowledge about the usage of Si as material for future trackers. Best fits the topic "Hybrid Silicon"?
116	Upgrade of irradiation infrastructures based on microbeams and gamma irradiation	RBI (S. Fazinic)	(Irradiation)	NO	HEP detector upgrades / HL-LHC, FCC	Facilities upgrade primarily serving to improve the knowledge on MAPS sensors. Best fits the topic "Hybrid Silicon"?

Conclusion

- Irradiation & Characterization Facilities
 - Support existing infrastructures
 - Eol #13 (EMC testing), Eol #14 (GIF++ gas system)
 - Eol #66 (two-photon absorption TCT)?
 - Develop common tools
 - Eol #30 (traceability/res. activation), Eol #133 (data managem./knowledge tools)
 - Upgrade instrumentation & dosimetry equipment
 - EoI #123 (CERN-IRRAD), EoI #137 (BDF/high-flux facilities), EoI #138 (MedAustron)
 - Eol #117 (high-power linear accelerators) ?
 - Others
 - Eol #8 (wireless dosimetry system) → "KT/outreach" topic ?
 - EoI #38 (Si studies at very high fluence) → "Hybrid Silicon" topic?
 - Eol #116 (MAPS sensor studies) → "Hybrid Silicon" topic ?
- Total Estimated Budget
 - ~5.5M EUR (1.8M EUR EC contribution) for the 10 assigned Eol's
 - ~5.0M EUR (1.6M EUR EC contribution) for the proposed Eol's classification