

Upgrading the proton beam of ISOLDE from 1.4 to 2.0 GeV:

The impact on beam intensities

ISOLDE – EPIC Workshop, 3-4 Dec 2019

João Pedro Ramos, T. Stora, S. Rothe, C. Duchemin

Past and future driver energy increase at ISOLDE

ISOLDE (1967) – with the SC

ISOLDE 2 (1976)

SC intensity increase

ISOLDE 3 (1983)

- Second target station with HRS
- Still in SC

ISOLDE 4 (1992)

With PSB – 1 GeV

ISOLDE 4.5 (2000)

With PSB – upgrade to 1.4 GeV

ISOLDE 5 (202x)

• With PSB – 2 GeV?

M. Borge, M. Kowalska, T. Stora, INTC-O-016

- 600 MeV -> 1.0 GeV (+67%)
- 1.0 GeV -> 1.4 GeV (+40%)
- 1.4 GeV -> 2.0 GeV (+43%)

Can be seen that the code was underestimating the yields (fragmentation reactions)!

Energy vs Intensity

ISOLDE ~1000

Elements
74
t_{1/2}
>tens of ms

Currently the leading facility of its type

But other ISOL are getting close...

J.P. Ramos, et al., I

Chosen case studies

By far not all ISOLDE targets!

But a good representation to give an idea of the 2 GeV upgrade effect across a wide target Z.

1.0/1.4 GeV vs 1.4/2.0 GeV

Cross section increase increase stabilizes around 3-4 GeV

The Simulation codes: FLUKA and ABRABLA

FLUKA

300 Mevents 40 cores (cluster) max 4 days per simulation

Very complete
Very good for high Z materials

ABRABLA

1 Gevents 8 cores (CERN Personal PCs) max 1 week per simulation

Well benchmarked for spallation at ISOLDE

Does not account for:

Secondary particles

Beam energy degradation (high Z targets)

Simulation codes experience at ISOLDE

Code benchmarked in most cases to be less than a factor of 2

M. Felcini, A. Ferrari, CERN-AB-Note-2006-006, 2006

Deconvolution of release from in-target production

Half-life [s]

 10^{3}

104

From experience ABRABLA is usually strong for spallation intarget production yields.

T.E. Cocolios, et al., NIMB 266 (2008), 4403-4406

10-1

Multiwall carbon nanotubes targets - **Z=6**

Calcium Oxide targets - **Z=20**

Yttrium Oxide targets - **Z=39**

Lanthanum carbide targets - **Z=57**

Tantalum targets - **Z=73**

Molten lead targets - **Z=82**

Uranium carbide targets - **Z=92**

UCx at 2.0 GeV vs Ta at 1.4 GeV

Using development Yield database: J. Ballof, et al., NIMB, EMIS Proceedings, in press.

What does the data say?

Products close to stability

FIG. 2. Excitation functions for representative deep spallation products. The data for $^{149}\mathrm{Tb}$ are from Ref. 9 and are for the $\alpha\text{-decay}$ branch; it is scaled up by a factor of 10 for convenience of comparison.

Fragmentation products Uranium

FIG. 3. Excitation functions for typical light fragmentation products.

S. B. Kaufmann and E. P. Steinberg, Phys. Rev. C 22, 167 (1980)

Neutron converter (p2n) targets

The dream p2n converter?

nanoUCx – answer for intensity upgrade

- nanoUCx has a high release efficiency with lower density (less Uranium)
 - Reduced doses in the target area
 - Reduce high level waste
- Reduce target size (as in other facilities for short lived cases)
 - nanoUCx to standard UCx is a factor of 2.5 total factor of 5 reduction in waste and dose
 - Can get it very soon (new lab)

EURISOL – The ISOL dream facility

FIG. 29. (Color) Production cross sections of Na in a 238 U target interacting with different beams; 1-GeV protons (blue line), 2-GeV protons (green line), and 2-GeV 3 He (red line). Calculations were made with INCL4 + ABLA. For comparison, also sodium production cross sections (points) measured at GSI in the reaction 1 H(1 GeV) + 238 U [23] are shown.

be 3He at 2 GeV

EURISOL = the dream ISOL facility

Second choice would be protons at 2 GeV!

Conclusions

- <u>Light targets do not benefit</u> from upgrade (but also no drawbacks)
 - Only for targets with Z>40
- Regions of increase, as general rule:
 - <u>Exotic n-deficient isotopes (largest increase)</u>:
 - $Z_{isotope} = Z_{target} (10 to 30)$
 - Factors of 2 to 40 have been seen.
 - Low Z isotopes (fragmentation):
 - Increase in factors of 2 to 4
- Factor from 1.4 to 2 GeV represent a safe increase
 - Unlike target to target variations at ISOLDE
 - For e.g. factor 2 in yield represents 2x less shifts for an experiment at ISOLDE
- No downside of increasing the beam to 2 GeV only yield increases are achieved
- All results are only energy upgrade if intensity is upgraded more can be gained!

Thank you!