Targets for an EPIC project.

Sebastian ROTHE for the ISOLDE target and ion source development teams

ISOLDE: Isotope Separation On Line

- 1. Production
- 2. Diffusion
- 3. Effusion
- 4. Ionization
- 5. Mass Separation
- 6. Transport

Beam Intensity =
$$\sigma$$
.j. N_t . ε

$$\varepsilon = \varepsilon_{diff} \varepsilon_{eff} \varepsilon_{is} \varepsilon_{sep} \varepsilon_{trans}$$

 N_t – Nr of exposed atoms [dim]

j – Proton flux [cm⁻²]

 σ – Cross section [mb]

ε – Efficiency [%]

ISOLDE Target assembly

Target base

Target material

Target Container + transfer line

Surface/Laser ion source

(Plasma) ion source

Images: A. Viéitez

Feedthrough connections

Frontend side

Target side

Target heating

Oven (mass marker)

Water circuit connectors

A. Viéitez

Gas

injection

Line

heating

ISOLDE Target Production 2018

29 ISOLDE targets

TARGET MATERIALS

ION SOURCES

Total targets assembled end of 2018: 49

- Delivered to ISOLDE: 29
- Delivered to MEDICIS: 10 + 2 in December
- Used for development: 8 (16%)

- 10 different materials
- Mostly carbides and metal foils LIST and negative ion
- Most popular: uranium carbide
- 7 different ion sources
- LIST and negative ion source back in action

ISOLDE Target Production Team 2018

Bernard Crepieux
- Assembly -

Andres Viéitez Suárez
- Assembly (Left the team summer '19)

Ermanno BarberoMachining artist -

Michael 'Mike' Owen - Assembly -

EPIC Baseline

- Energy upgrade : 2 GeV (+ 40%)
 - power deposition

In-target production aspects -> see talk by JPR

- Intensity upgrade : BTY : 4uA (ppp x 2)
 - Mitigate (Peak) power deposition, shocks?
 - Impact on target lifetime ?

1.4 GeV -> 2.0 GeV - Uranium Carbide

ALL PARTICLES

E_{dep} at 2GeV

 Target type#1(radius) – Target type#2(radius)	#1 - #2 W _{total} per μΑ 5 cm	#1 - #2 W _{total} per μA 25 cm	#1 - #2 W _{total} per μΑ 100 cm
UC ₂ (0.7) - Ta(2.5)	117 - 108	117 - 96	118 - 50
UC ₂ (0.7) - UC ₂ (2.5)	116 - 186	117 - 165	118 – 85
UC ₂ (0.7) - UC ₂ (0.7)	118 - 26	117 – 13	117 – 2.5
UC ₂₋ nano(0.7) - UC ₂ (2.5)	33 - 244	33 - 235	32 – 186
UC ₂₋ nano(0.7) - UC ₂ (0.7)	32 - 70	33 - 46	33 - 13

11% increase for micro UCx 3% increase for nano UCx

25 cm

1.4 GeV

protons

1.4 GeV -> 2.0 GeV - Liquid targets

E_{dep} in Pb and Sn

Incident proton beam with an energy of 1.4 GeV and 2GeV

Material (diameter in mm, length in mm, density in g/cm³)	Watts per μA All particles	Watts per μA Protons only
Pb (δ=10 mm, l=20 cm, ρ=11.3 g/cm ³) 1.4 GeV	286	171
2.0 GeV	354	187
Sn (δ=10 mm, I=20 cm, ρ=7.3 g/cm ³) 1.4 GeV	221	144
2.0 GeV	255	151

Tab.1: Deposited energy in the whole target volume from all particles and from protons only in Watts from an incident proton beam intensity of 1 μ A. The relative uncertainties on the values range from 0.02% to 0.6%). 1.4 GeV and 2.0 GeV have been considered.

Ratio of the E_{dep} in Pb and Sn 2 GeV/1.4 GeV

· · · · · · · · · · · · · · · · · · ·					
Material (diameter in mm, length in mm, density in g/cm³)	All particles	Protons only			
Pb (δ=10 mm, l=20 cm, ρ =11.3 g/cm ³) 2.0 GeV/1.4 GeV	1.24	1.10			
Sn (δ =10 mm, I=20 cm, ρ =7.3 g/cm ³) 2.0 GeV/1.4 GeV	1.15	1.05			

Tab.1: Ratios of the deposited energy from all particles and from protons only between a 2 GeV and 1.4 GeV incident proton beam.

Ohmic target heating nominal ~2kW

Beam heating LPb 1uA@ 2GeV: 350W

24% increase for LPb

15% increase for LSn

Can be mitigated through reduced heating.

FLUKA Simulation: Ch. Duchemin

Power deposition higher intensity

Beam energy deposition for a standard UC2-C target @ 50g/cm2

SOLDE Targets and Dumps for 2GeV beams

Richard Catherall
ISOLDE Technical Coordinator
EN-STI
132nd IEFC meeting 20th March 2015

Higher intensity can be mitigated

To be considered:

- Individual target dose
- Frontend dose, if #(FE) constant

STAGISO vs NORMISO - Release Profile

Booster pulse pictures from PhD Thesis, R. Wilfinger

2.3 μs in NORM 16 μs in STAG

142Cs release on Converter

142Cs release on Target

Complete study to be published soon.

J.P. Ramos

Release curves measured on:

- GPS and HRS
- Target and Converter
- 26Na and 142Cs

STAGISO can be used as standard

Assumption 1: Fixed Target production budget

- 2018: 39 target assemblies for ISOLDE
 - Exceptionally due to LS2
 - made by 3 technicians -> ~ 13 targets / technician /a
- Since 2019
 - Reduced back to 2 technicians -> ~26 targets /a is reasonable
 - actually 27 targets /a promised to ISOLDE physics
- Also to be considered: Material costs, storage capacity, dismantling, waste treatment, disposal

EPIC effects: 4 uA & 27 Targets

- Intensity increases by x2 while # targets (27) constant
 - dose / target increases

Expected increase in radioactive inventory /target

Constraint 2: Current Target design & operation

- Currently typical target exchange after ~ 10 d
- Reasons for frequent changes
 - Target material ageing ~ Time x temperature
 - Ion source degradation ~ Time x temperature
 - Target dose limits ~ PoT, ~ target Z, ~ target dens.
 - Schedule
 - new user / new target policy
 - Target/ion source custom made for requested isotope

- Target material development
- → Ion source development
- Target material development
- Optimise operation paradigm

EPIC Targets

- Targets shall be less affected by PoT
- Improve overall target lifetime
- Target material development
- lon source development
- Optimise operation/production paradigm

It is imperative to include Target and Ion Source development in EPIC

EPIC target and ion source development

- Materials
- Ion Sources
- Target bases
- Operation cycle

ISOLDE target materials

Material requirements

- High production cross section of the isotope(s) of interest
- Stability at high temperatures
- Chemically stable and inert
- Resistance to radiation damage
- Rapid diffusion and effusion rates of the element(s) of interest

Operation <u>temperature</u> limitations:

- Sintering (preserve target microstructure)
- Limited reactivity with surrounding materials
- Reduced stable beam contaminants (chemical impurities)
- Moderate equilibrium vapor pressure compatible with ion source (10⁻² Pa)

João Pedro Ramos | 07/09/2017 MEDICIS-Promed Specialized Training on Radioisotope Production

Number of targets in the last 16 years at ISOLDE:

João Pedro Ramos: Thick solid targets for the production and online release of radioisotopes The importance of the material characteristics – A review

Most prominent Uranium Carbide

Target material ageing

- Liquid targets do not age
- Metal foil targets sinter (time@temperature)
 - define operation conditions to prevent sintering
 - Stabilize through separation layers or coatings etc.

- Fibers
- Nano materials

João Pedro Ramos | 07/09/2017

Figures: MEDICIS-Promed Specialized Training on Radioisotope

Nanomaterials at ISOLDE

João Pedro Ramos | 07/09/2017 MEDICIS-Promed Specialized Training on Radioisotope Production

Nano UCx

Hint on longer material life times

Typical target densities:

- HD UC 13.2 g/cc
- Standard 3.2 g/cc
- Nano 1.9 g/cc
- -> Nano UC targets are lighter (60%)
- -> less secondary particles, less damage

Reduced dose through reduced density

Class A nano-actinide lab in construction

Develop nano actinide production and handling

Targets need to be tested ONLINE

Additional yield station for GLM suggested

lon sources

- MK1- Ta (+RILIS)used 50-70 % of the time
- Rest shared between FEBIAD type plasma sources + few other sources

FEBIAD weaknesses identified and some already addressed

FEBIAD developments

SPES FEBIAD design

CERN VADLIS 2.0 Yisel Martinez Palenzuela, diss.

potentially more robust anode mount.

http://eurisol-jra.in2p3.fr/wp-content/uploads/sites/3/2019/02/ENSAR2 D14-2-Deliverable final-V01.pdf cathode temperature

Figure 2. Optimized cathode design and focus on the related temperature field.

Improved cathode design

Figure 3. The cathode alignment system.

Long-term performance measurement required ONLINE

Target base

- Weak point seems to be the vacuum seals
- Require analysis of origin of leaks
- improve seals
 - Other polymers (PEEK, PC, ...)
 - Metallic seals
 - Investigate all-metal VAT valve
 - Leak test every target before dismantling
- Development required to improve durability
 - Dismantling & Post mortem started in ISOLDE Hot cells

Ideas for scheduling, operation, production

- Facilitate scheduling of reused targets: measure yield for upcoming experiments foreseen on this target
- Identify and stock standard target/ion source combinations
 - -> more backups available
- Increase reliability
 - Move away from production to deadline
 - Test target base, plasma source separately, limit custom assembly to mass markers / gas leak / target material

Collaborate!

Many ISOL facilities face the same technical problems.

Ongoing and planned collaborations:

FEBIAD, Molecular Beams, Target heating concepts, Material compatibility, Actinide nano materials, ...

... more to come!

THX to the colleagues interviewed:

Richard, Joachim, Jochen, Charlotte, David, Vassilis, Stefano, Nhat-Tan, Thierry, Gerda, Karl, Alberto, Bruce, Joao, Tom, Bernard, Mike, Simone ...