ISOLDE-EPIC workshop 3-4 December 2019

ISOLDE beam dumps replacement: status and perspectives

M. Calviani, R. Catherall, S. Gilardoni, A. Perillo-Marcone, J. Vollaire for the EN-STI Group

EDMS 2278227

Introduction

- ISOLDE target area and beam dumps (BD)
- Historical notes on the ISOLDE BD
- Motivations to exchange beam dumps
- Beam dump designs
- Pre-study actions plans and perspectives
- Conclusions

Consideration about ISOLDE target areas

- Beam (and secondary particles) not interacting in the target (~70-85%) are intercepted in the dumps (GPS or HRS)
- Front Ends (target stations) are also exposed to high radiation levels limiting their lifetime (replaced after ~5 years with beam)
- Targets are replaced several times during the year
- Dumps (GPS and HRS) have never been replaced (1992)

Historic notes about ISOLDE BD

- Current ISOLDE configuration dates to 1991-1992 (ISOLDE 4)
- Beam dumps were designed for a proton beam of 1 GeV and lower (?) intensity

Historic notes about ISOLDE BD

- ISOLDE target area was covered with earth to serve as shielding
- Structures made of (already quite) radioactive blocks were used as complementary shielding (5 assemblies) in critical areas
 - Max dose rate max ~1 mSv/h at contact, >1 kBq/g specific activity...

- Dump material not clearly defined → carbon steel
 A36 (S275)
- Dimensions (WxHxL) [m]:

HRS: 0.4 x 0.4 x 1

■ GPS: 1.6 x 1.6 x 2.4

- Shielding: concrete blocks
- Not actively cooled, relying on cooling via conduction on external blocks
- State of contact shielding/dump: unknown

Historic notes about ISOLDE BD

Historical pictures of target area shielding

Motivations to exchange beam dumps (I/III)

Molten material?

- Signs of corrosion and condensation on the visible face (accessible from target area)
 - Dump material not up to date with best practices in the field
- Unknown condition (neither access nor monitoring)

Motivations to exchange beam dumps (II/III)

- Current max beam 1.4 GeV/c at 2.5 μA is 3.5 kW (2.5-3 kW on dump)
- Large uncertainty on the heat conduction coefficient between core and shielding assembly due to geometric and construction

560 °C steady state for HRS assuming ~3-5 W/m²K HTC

■ Coupled FLUKA/thermo-mechanical analyses (EDMS 1277863, 1308217) are showing that the dumps already operate at their limit in terms of temperature and mechanical stresses → dangerous to go higher

Motivations to exchange beam dumps (III/III)

Radiation protection optimization

- Radiation measurements in accessible areas have shown the need for shielding improvements around the target areas and beam dumps (EDMS 1142606)
 - Exclusion area implemented (fence) but due to sky shine still a source of exposure for the reference group (proximity)
 - The soil is radioactive around the beam dumps shielding (samples were taken in 2013 before civil engineering work for MEDICIS)
- Beam dump integration could be further optimized to limit air activation and dose to equipment (back-scattering) and lower personnel exposure during interventions

Summary of BD exchange motivations

Advantages

- Allow for higher beam power for ISOLDE
- Adapt beam dump to evolving needs
- Take advantage to improve shielding around the facility
- Reduction in air activation through new design
- Reduction of environmental impact

4 December 2019

Disadvantages

- Removal, storage and replacement of ~3500m³ of earth, ~50% of which is activated - but this can be minimized by adhoc techniques
- Handling and storage of radioactive beam dump(s) & blocks

Beam parameters

- Current max beam parameters (1.4 GeV/c, 2.5 μA) would yield
 ~3.5 kW beam power and 2.5-3.0 kW power on the dump
- PS Booster external dump beam specifications (EDMS 1229493) indicated a maximum intensity of 8*10¹³ p/pulse every 1.2 seconds, equivalent to ~10.7 μA
- Considering 2.0 GeV/c operation, this would give a theoretical max of ~20 kW beam power, i.e. 15-18 kW on dump

Current dumps are clearly not ready to cope with this potential **6x power** increase (melting, structural damage, environmental impact)

Potential beam dump designs (I/IV)

 CERN has large experience in building high intensity target and beam dumps and O(20 kW) power can be managed with devices built for the LHC Injector Upgrade (LIU) Project

Potential beam dump designs (II/IV)

Potential beam dump designs (III/IV)

LIU-SPS Internal Beam Dump (TIDVG5)

Potential beam dump designs (IV/IV)

CuCrZr cores

Brainstorming ideas

- to have good thermal conductivity and strength
- Water cooled with HIPed tubes
 - to efficiently extract heat from the core
- Stainless steel cooling tubes seamless until easily accessible areas
 - for high reliability and maintainability
- Dump monitoring (thermocouples (core) or Pt100)
- Collimator(s) located in the upstream direction in order to reduce backscattered neutrons
- Remote exchange possibility for operational flexibility as well as for easier dismantling in the (long-term) future
- Optimization for radiation protection point of view

Pre-study for beam dump exchange

- Budget requested (and approved) to perform a feasibility study for the dump removal and a design proposal with two new dumps meeting operational needs and modern radiation protection standards
- Activity to span over the 2020-2023 period
 - Redaction of a Project Implementation Plan during 2023
 - Definition of precise budget estimate required to carry out the Project
- Input from ISOLDE physics community essential!

Dump exchange can be executed **only** during a Long Shutdown → LS₃

Challenges and actions

- Identification of the best way of accessing the dump is the priority (from the top - fully vertical handling – or from the side hill)
- 2) Management of radioactive soil and radioactive blocks identified also as significant constraint
- 3) Design of an **extremely robust and reliable dump(s)**, with no maintenance needs in the forbidden area close to the target area
- Definition of beam parameters (intensity & optics)

Will start the study in 2020 with a few stakeholders (EN-STI, SMB, HSE-RP, EN-HE, BE-OP) and include other groups concerned later when designing the new system (EN-CV, EN-EL...)

Conclusions

- Current ISOLDE beam dumps are not capable of withstanding neither current (3.5 kW) and certainly not higher intensities (~20 kW)
- Dump designs capable of withstanding 20kW+ power are technically feasible (and proven)
- However, BD exchange is a complex endeavour
- Pre-study approved by ACC-CONS for 2020-2023, aiming at redacting a Project Implementation Plan with a detailed cost estimate by 2023, aiming at execution – if Project is approved – during LS3

