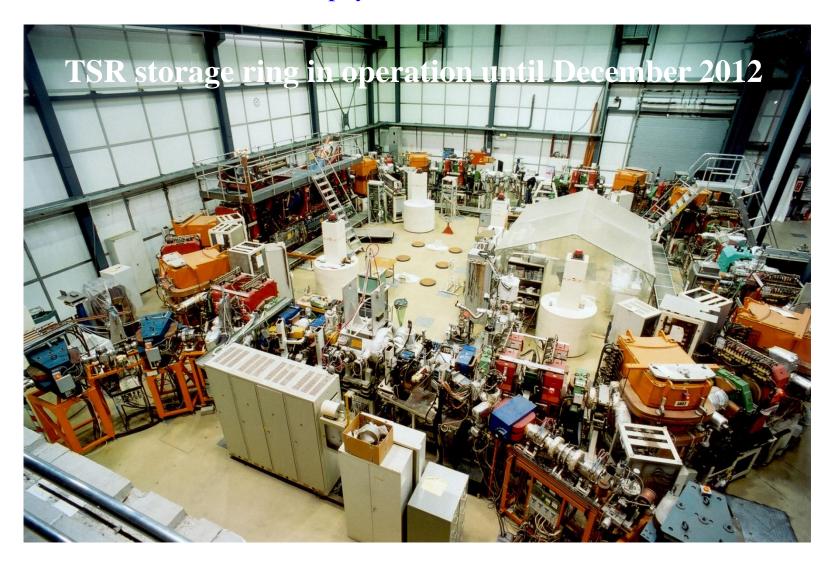
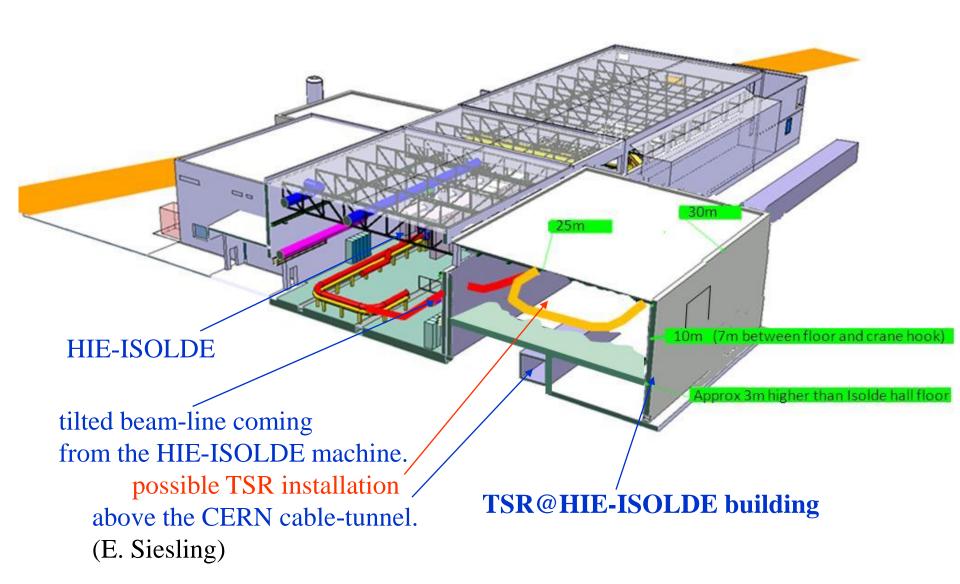

A new ISOLDE storage ring - ISR

Manfred Grieser


Max-Planck-Institut für Kernphysik, Heidelberg


ISOLDE-EPIC workshop, CERN, Geneva, 3rd-4th December 2019

Proposed TSR@ISOLDE project

to store radioactive ions for nuclear physics experiments it was proposed to move TSR located at MPI for nuclear physics to ISOLDE.

TSR @ HIE-ISOLDE

Time-line of the TSR@ISOLDE project

TSR@ISOLDE workshop at MPI-K Heidelberg evaluated the future for TSR Oct 2010

ISOLDE and Neutron Time-of-Flight Committee endorsed Jan 2012

TSR technical design report 129 co-authors (47 institutions)

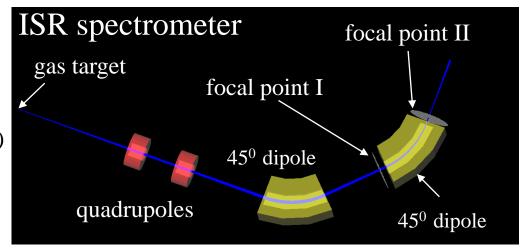
EPJ Special Topics **207** 1-117 May 2012

Approved by CERN Research board, May 2012

"The installation of TSR, as an experiment to be included in the HIE-ISOLDE programme, was approved by the Research Board.

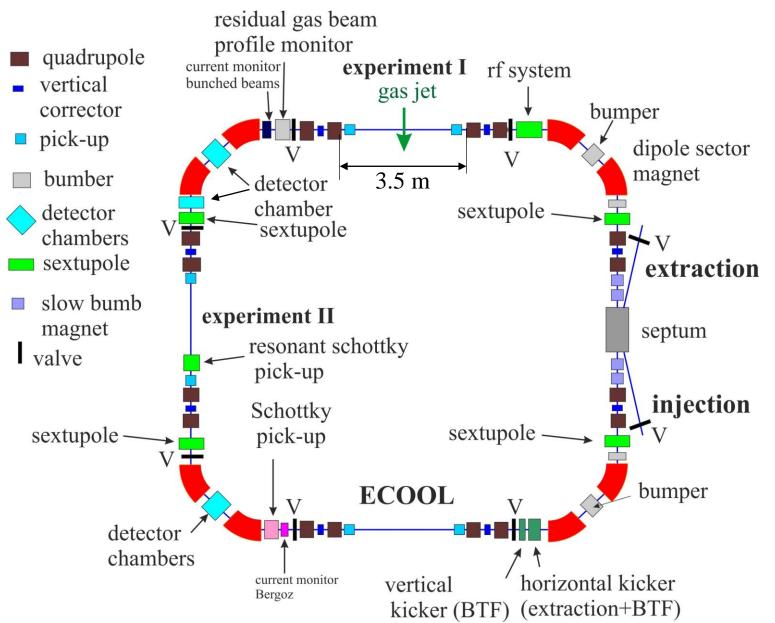
The timescale will be defined once the study of its Integration has been completed."

Presentation of the integration study to the CERN Research Board Nov 2013

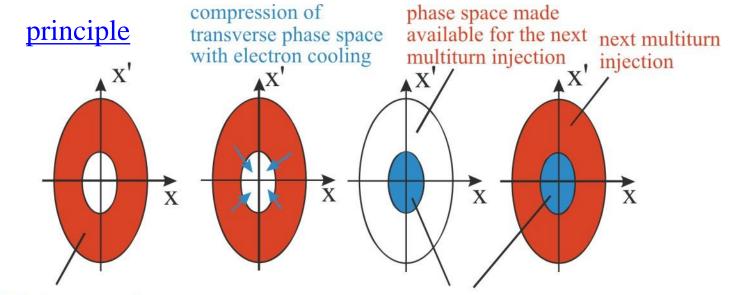

Several TSR@ISOLDE workshops at CERN: 2012, 2014, 2015

Updated CERN integration study with report to the CERN directorate 2016

CERN director general: decision about the TSR@ISOLDE project is postponed until 2020/2021 (after second LHC upgrade) August/September 2016


Design Criteria of the new storage ring

- a) storage ring should be able to store ions up to ²³⁸U⁷²⁺ and 10 MeV/u at the equilibrium charge state obtainable with the HIE-ISOLDE stripper.
- \Rightarrow maximum rigidity of the ring: B $\rho_{max} \approx 1.5$ Tm
- b.) <u>daughter nuclides</u> with large transfers momenta, produced in nuclear reactions, should be <u>focused at the detector positions</u>
- ⇒ <u>ISR spectrometer should have focal points in the detector planes</u>
- c.) extraction of an cold stored ion beam for an external spectrometer
- d) storing of heavy daughter nuclei up to a certain rigidity deviation ($\Delta B \rho / B \rho$) created in nuclear reactions should be possible.
- e.) storing ring should be compact to fit in the present HIE ISOLDE hall


Layout of the new storage ring

with straight section length L=3.5 m and circumference C=42.4 m

ECOOL Stacking

A combination of multi-turn injection and electron cooling stacking can be used to fill the storage ring with particles

filled transverse phase space with multiturn injection

phase space containing the electron cooled ion beam

particle number N(t):

$$\frac{dN(t)}{dt} = n_r N_{inj} - \frac{N(t)}{\tau}$$

 N_{inj} -injected particle number per injection n_r =1/ T_C - injection rate τ - total lifetime

equilibrium ion number N_0 : $N_0 = n_r \tau N_{ini}$

Space charge limit due to incoherent tune

maximum possible stored ion number:
$$N_s = \frac{A}{q^2} \frac{2\pi}{r_p} \cdot B \cdot \beta^2 \cdot \gamma^3 \cdot \epsilon \cdot (-\Delta Q)$$

 $-\Delta Q$ - possible incoherent tune shift for B=1 at TSR: $-\Delta Q$ ≈0.065-0.1

for an **electron cooled ion beam**:

$$\epsilon \propto \left(\frac{q^4}{A^2} \frac{N_s}{\lambda_{cool}} \frac{1}{\beta^3}\right)^{0.44} \quad \lambda_{cool} \propto n_e \, \frac{q^2}{A} \quad n_e \propto \beta^2$$

new storage ring (ISR) has similar possible incoherent tune shifts

 \Rightarrow scaling law

$$N_s = const \frac{(A^{33}/E^5)^{1/28}}{q^2}$$

E-ion energy in MeV A-ion mass q-ion charge state

TSR experiments with ${}^{12}C^{6+}$: $const \approx 7.10^9$

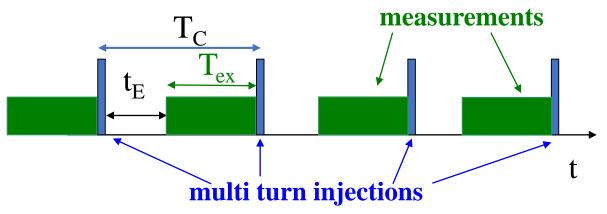
Measured and calculated space charge limit of an electron cooled ion beam at the TSR

Ion	E (MeV)	measured N _s	calculated N _s
p	21	$5.4 \cdot 10^9$	$4.1 \cdot 10^9$
¹⁶ O ⁸⁺	98	$9.4 \cdot 10^8$	1.3·109
¹² C ⁶⁺	73	$1.7 \cdot 10^9$	$1.7 \cdot 10^9$
³² S ¹⁶⁺	195	$9.5 \cdot 10^8$	6.3·108
³⁵ Cl ¹⁷⁺	293	5.1.108	5.8·108

Space charge limit for some selected ion beams

Space charge limit of an electron cooled ion beam $N_s = const \frac{(A^{33}/E^5)^{1/28}}{a^2}$

$$N_s = const \frac{(A^{33}/E^5)^{1/28}}{q^2}$$

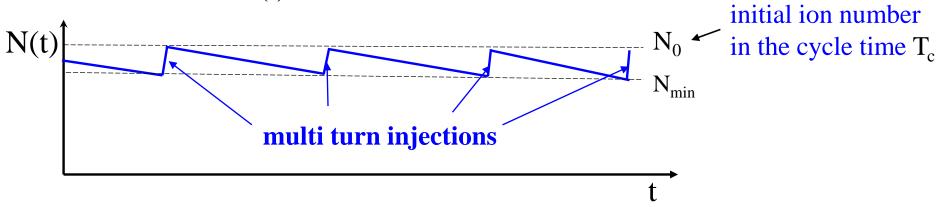

beam	energy (MeV/u)	q	Ns
$^{7}\mathrm{Be^{3+}}$	8	3+	$5 \cdot 10^9$
86Kr^{36+}	10	36+	3.108
96 Ru $^{39+}$	10	39+	3.108
$^{196}\text{Hg}^{64+}$	10	64+	2.10^{8}
²³² Th ⁷¹⁺	10	71+	2.10^{8}
238U72+	10	72+	2.10^{8}

green: equilibrium charge states after the HIE-ISOLDE stripper

Result: For the equilibrium charge state after the HIE-ISOLDE stripper at 10 MeV/u the space charge limit is about: $N_s \approx 2.10^8$

Remark: For some ion species the space charge limit may not be reached due to the limitation of the injected ion number N_{inj}

Injection and measuring scheme

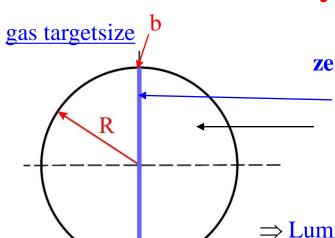


T_c- cyle time

= inverse repetion rate n_r of the multiturn injection

 t_E - electron cooling time T_{ex} -measurement time

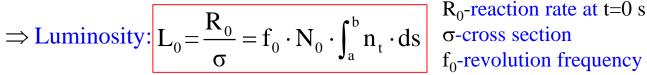
Stored ion number N(t)

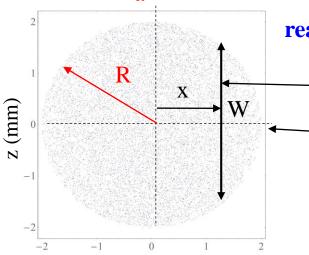


Luminosity

$$L(t) = \frac{R(t)}{\sigma}$$

R(t)- reaction rate σ - cross section for a reaction with the gas target


Luminosity dependency on target radius R


zero emittance ion beam interacting with a gas target

ion beam with $\varepsilon=0$ mm·mrad and $\Delta p/p=0$ gas target with radius R

target thickness $W = \int_{0}^{b} n_{t} \cdot ds$ n_{t} -gas target density

 R_0 -reaction rate at t=0 s N_0 - number of ions

real ion beam interacting with the gas target with radius R

target thickness w depends on horizontal ion position x

ions outside the gas target will not react

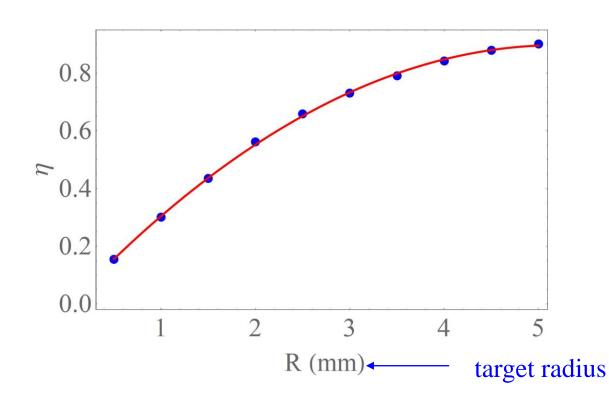
modification of maximum possible luminosity:

ion beam gas target interaction parameter: $\eta \le 1$

$$w = 2 \cdot \sqrt{R^2 - x^2}$$

x (mm)

The ion beam gas target interaction parameter η


η depends on:

- a.) stored ion beam size, characterized by the horizontal and vertical beam emittance ϵ_x , ϵ_y , ring TWISS parameter, dispersion D_x and ion beam momentum spread $\Delta p/p$
- b.) target radius R
- c.) possible horizontal ion beam displacement x_d

parameter:

 $\epsilon_x, \epsilon_y = 0.5 \text{ mm} \cdot \text{mrad}$ $\sigma_p/p = 2 \cdot 10^{-4}$ $D_x = 0 \text{ m}$ $x_d = 0 \text{ m}$

standard mode

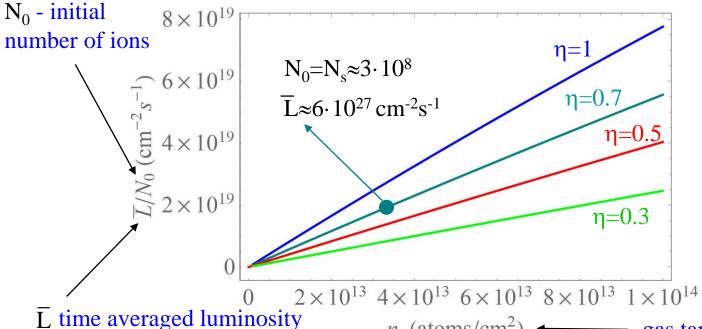
Time averaged luminosity L

$$\overline{L} = \frac{\int\limits_{t_{E}}^{T_{c}} \eta \cdot L_{0} \cdot e^{-t/\tau} dt}{T_{c}}$$

T_c-cycle time t_E-electron cooling time N₀- number of initial ions τ-total life time τ_t-target life time $\tau_{\rm v}$ -life time in the ring vacuum τ_{ECOOL} -ECOOL life time

$$\begin{array}{ll} \text{with} & L_0 \! = \! f_0 \cdot N_0 \cdot \int_a^b n_t \cdot ds & \text{(luminosity of a an ion beam with } \epsilon \! = \! 0 \text{ mm·mrad} \\ \text{and} & \Delta p/p \! = \! 0) \\ \\ \text{and} & \frac{1}{\tau} = \frac{1}{\tau_t} + \frac{1}{\tau_v} + \frac{1}{\tau_{ECOOL}} & \longleftarrow \text{ total life time } \tau \\ \end{array}$$

The ion beam gas target interaction parameter η determined the gas target life time τ_t


the ion beam gas target interaction parameter
$$\eta$$
 determined the gas target $\tau_t = \frac{1}{\eta \cdot \sigma \cdot f_0 \int_a^b n_t ds}$

$$\sigma - \cos s = \cot \eta \cos s \text{ in the gas target } f_0 - \text{revolution frequency}$$

Time averaged luminosities

Parameter: beam ⁸⁶Kr³⁶⁺E=10 MeV/u target: H₂ cycle time $T_c = 2 \text{ s}$ $p=5\cdot10^{-11}$ mbar vacuum life time with ECOOL: $T_v=100$ s

t_E=0.3 s start of the measurement after injection

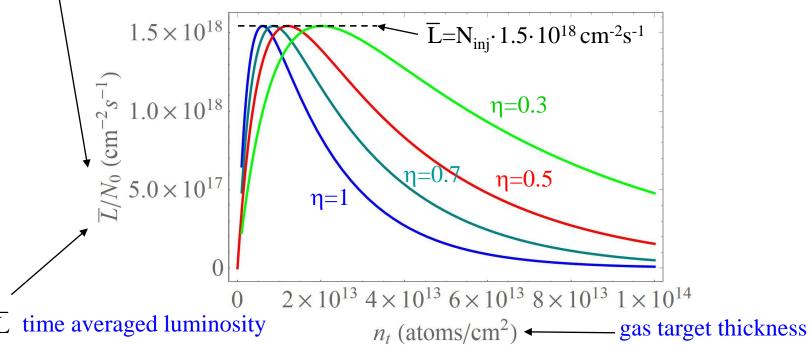
 n_t (atoms/cm²) \leftarrow gas target thickness

in case of ⁸⁶Kr³⁶⁺:
$$\overline{L} \approx \eta \cdot \frac{T_c - t_E}{T_c} f_0 \cdot N_0 \cdot \int_a^b n_t \cdot ds$$

where total lifetime $\tau >> T_c$ here N₀-stored ion number

$$N_0 = \frac{\tau}{T_C} N_{inj}$$
 injected ion number

L for ²³⁸U⁷²⁺ and He-target

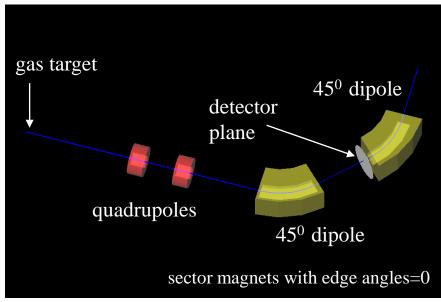

Parameter: beam ²³⁸U⁷²⁺E=10 MeV/u target: He

cycle time $T_c = 2 \text{ s}$

p=5·10⁻¹¹ mbar vacuum life time with ECOOL :T=19 s

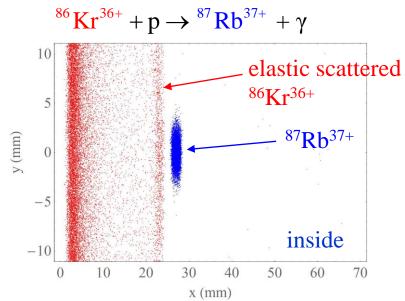
t_E=0.3 s start of the measurement after injection

L time averaged luminosity

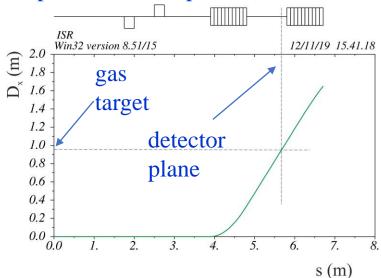

in case of $^{238}U^{72+}$: total life-time << T_c

here N₀=N_{ini} injected ion number !!!!

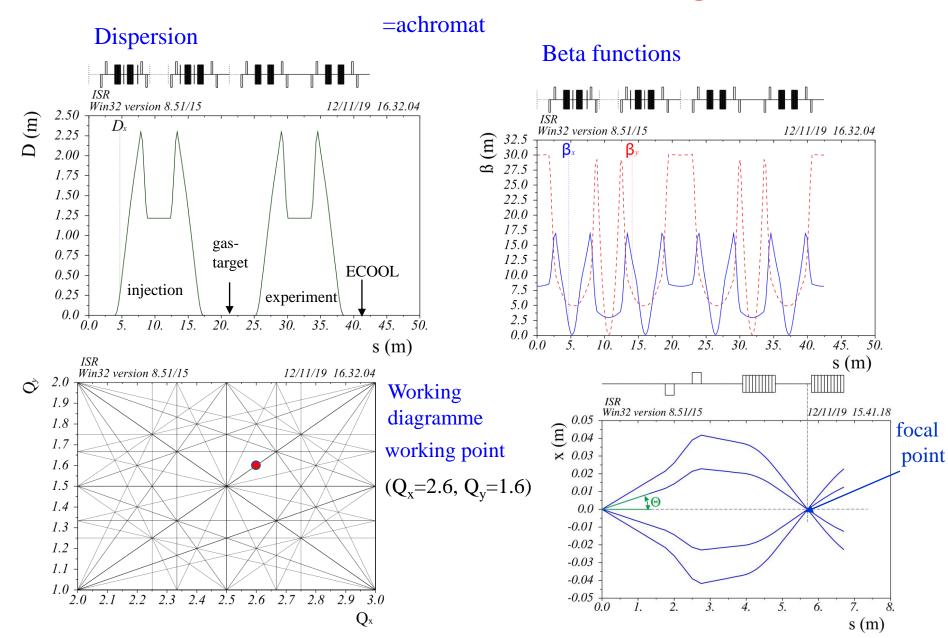
ISR Spectrometer

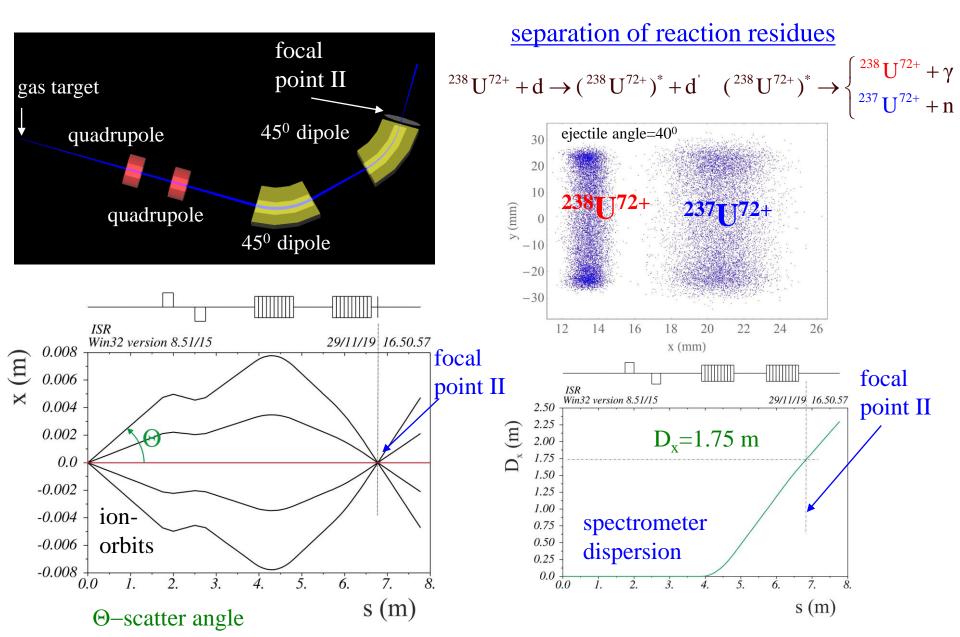

s (m)

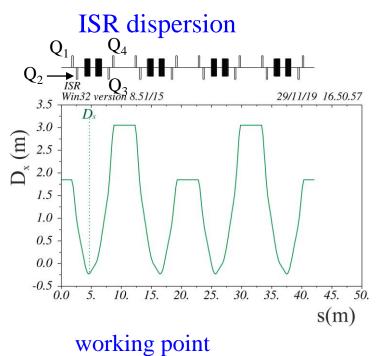
spectrometer

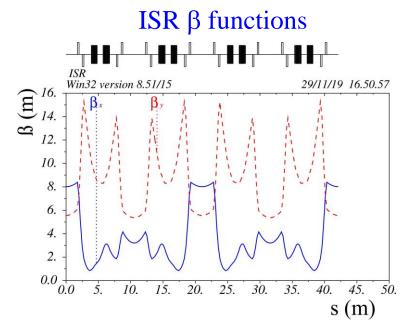


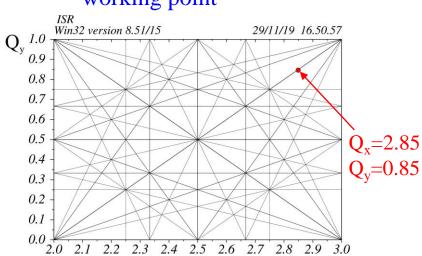
ISR Win32 version 8.51/15 12/11/19 15.41.18 0.05 focal gas 0.04 point × 0.03 target 0.02 0.01 scatter angle 0.0 -0.01 -0.02-0.03 -0.04 -0.05 0.0 5. 6.

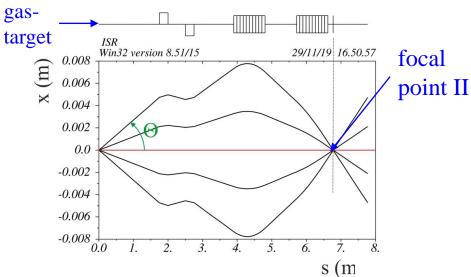

Example: proton pick-up reaction


spectrometer dispersion


Standard-Mode of the ISR ring



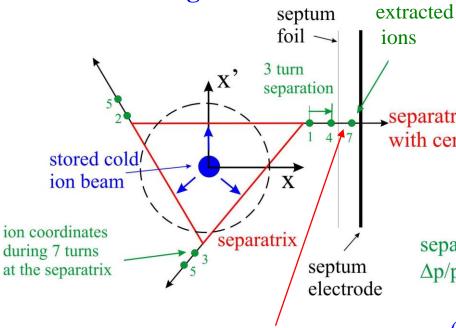

Focal point II of the ISR Spectrometer



ISR Mode for focal-point II operation

Slow Extraction

stored cold-


ion beam

separatrix of an ion with

 $\Delta p/p > 0$ for $Q_x < 2.33...$

horizontal emittance of slow extracted beam is determined by the extraction method and momentum spread $\Delta p/p$ beam with momentum spread

mono energetic beam

ions are extracted along a straight line in the transverse phase space $\Rightarrow \varepsilon_x=0$!

extracted separatrix of an ion with septum foil extracted ions $\Delta p/p < 0$ for $Q_x > 2.33...$

septum

electrode

(dispersion at the septum: D=0 m, D`=0).

 \Rightarrow divergence Δx ' of extracted beam horizontal beam size Δx is given by the three turn separation at septum position with Δx '>0 $\Rightarrow \epsilon_x$ >0

Measured emittance of the slow extracted beam

experiment done at the TSR

beam: 12C6+ E=73.3 MeV

Measured emittances of the slow extracted beam:

number of injected ions: $N=2.7\cdot10^5$ (I=0.15 μ A)

horizontally: $\varepsilon_{x,\sigma} = 0.25 \pm 0.05 \text{ mm} \cdot \text{mrad}$

vertically $\varepsilon_{v,\sigma} = 0.275 \pm 0.025 \text{ mm} \cdot \text{mrad}$

stored ion beam: $\varepsilon_{y,\sigma} = 0.245 \pm 0.019 \text{ mm} \cdot \text{mrad}$

emittance definition: $\varepsilon_{\sigma} = \frac{\sigma^2}{\beta} = \varepsilon_{\text{rms}}$

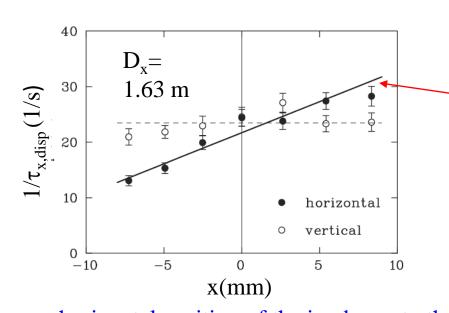
momentum spread of slow extracted beam:

was not measured

cooled stored beam

N=4·10⁷ $\varepsilon_{x,\sigma} = 0.02 \text{ mm·mrad}$ $\varepsilon_{y,\sigma} = 0.04 \text{ mm·mrad}$

measured for $^{12}\text{C}^{6+}$ E=73.3 MeV and n_e =8·10⁶ cm⁻³


-During the extraction process electron cooling is switched off resulting in a larger emittance compare to a continues electron cooled ion beam

Modifying the slow extraction scheme

- -electron **cooling has to be permanent on** to cool the vertical and longitudinal degree of freedom during the extraction process
- <u>-horizontal electron cooling has to switched off</u>, or can be used to heat the beam for the slow extraction process
- ⇒combination of slow extraction with dispersive electron cooling

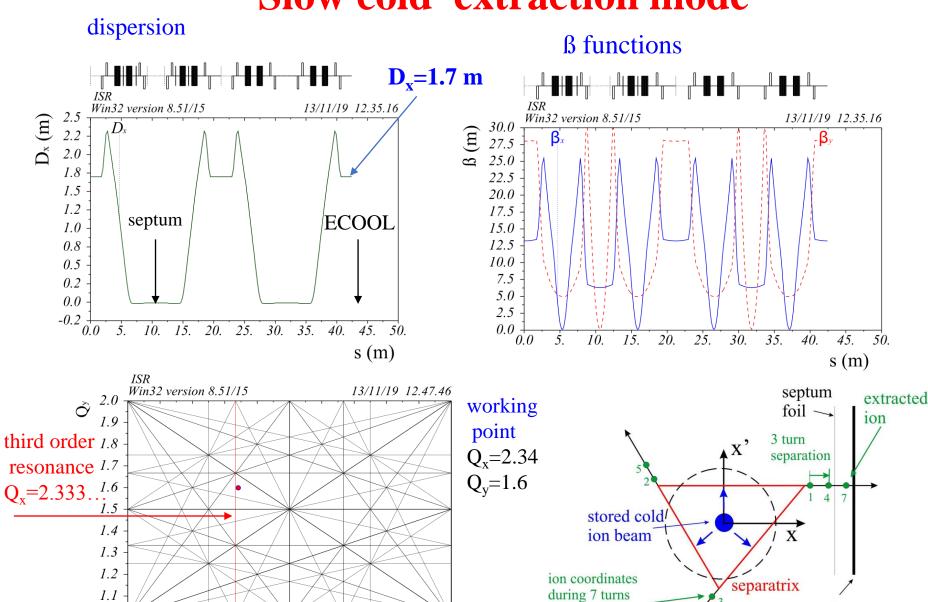
In the **dispersive electron cooling** process horizontal cooling rate is transferred in the longitudinal degree of freedom.

Dispersive electron cooling is realized by shifting the electron beam towards the ion beam and applying a dispersion in the electron cooler

x horizontal position of the ion beam to the center of the electron beam

Horizontal and vertical cooling rate

measured at the TSR with 73 MeV ¹²C⁶⁺


$$\left(\frac{1}{\tau_{x,disp}}\right) + \frac{1}{\tau_{x,0}} + \eta_c \frac{\alpha_D D_x}{p_0} \alpha_{\parallel} \cdot x$$

$$\alpha_D = e^2 n_e / (4\epsilon_0 m_e v_0)$$

$$n_e = 8 \cdot 10^6 \, cm^{-3} << n_{e,max} = 5.6 \cdot 10^7 \, cm^{-3}$$

 \Rightarrow switching off horizontal electron cooling or to use horizontal heating is possible by increasing the electron density n_e

Slow cold extraction mode

2.5

2.6

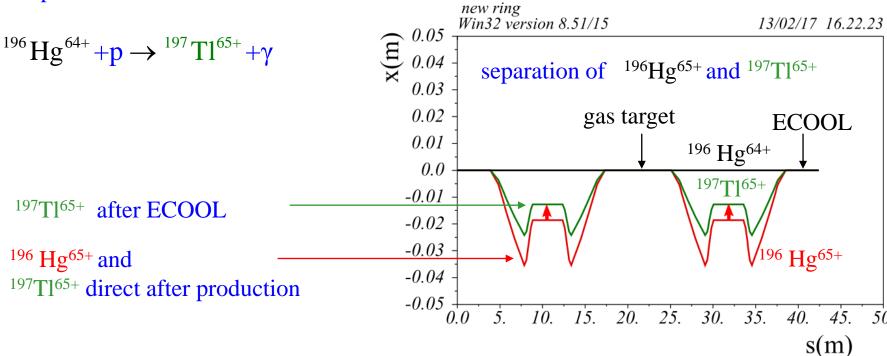
2.7 2.8

 Q_{x}

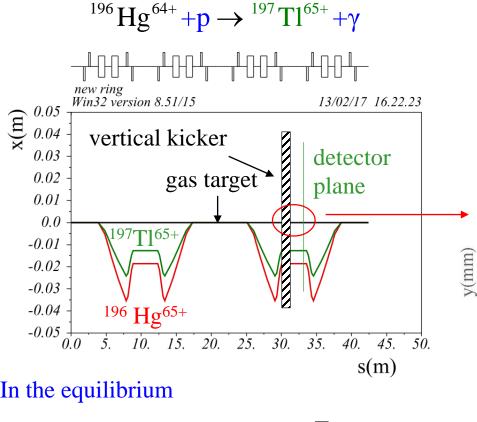
at the separatrix

septum

electrode

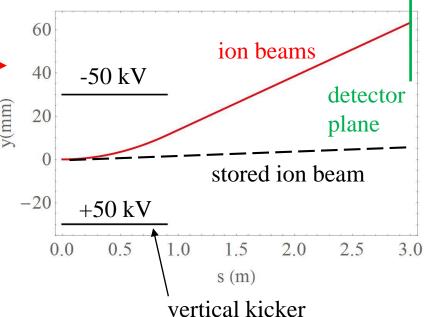

Storing of daughter nuclei produced in nuclear reactions

proton pick-up reaction ${}^A X^{q+} + p \longrightarrow {}^{A+1} Y^{(q+1)+} + \gamma$ cannot separated with stripping: ${}^A X^{q+} + gas \longrightarrow {}^A X^{q+1} + e$ cannot separated with


daughter nuclei $^{A+1}Y^{(q+1)+}$ and stripped ion $^{A}X^{q+1}$ ions have the same magnetic rigidity $B\rho$ and cannot separated at the detector plane!

By storing the daughter nuclei ^{A+1}Y^(q+1) and electron cooling the daughter nuclei can be

separated from the stripped ions ${}^{A}X^{q+1}$. example:


Direct Detection of the produced daughter nuclei

stored ion beam towards the detectors

A vertical kicker is used to kick the

second experimental straight section II

In the equilibrium

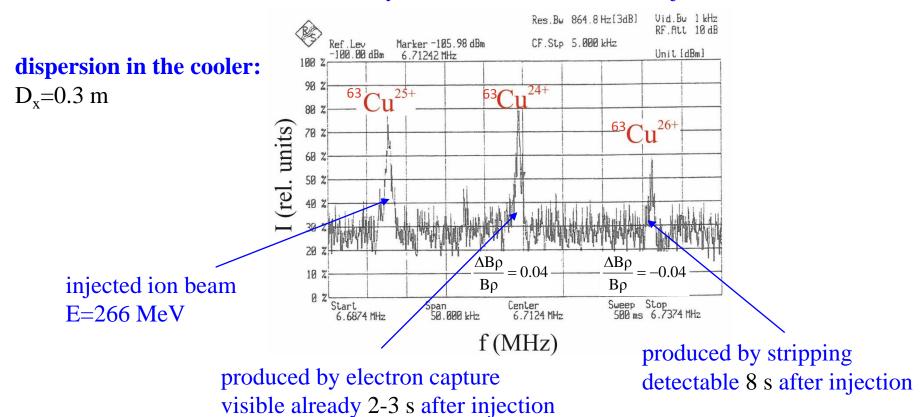
number
$$N_{\text{d,0}}\,\text{of}^{-196}\text{Tl}^{65+}\colon\,N_{\text{d,0}}=\overline{L}\tau_{\text{d}}\sigma$$

example: lifetime daughter nuclei: τ_d =3.5 s

average luminosity: $\overline{L} = 10^{27} \text{ cm}^{-2} \text{s}^{-1}$

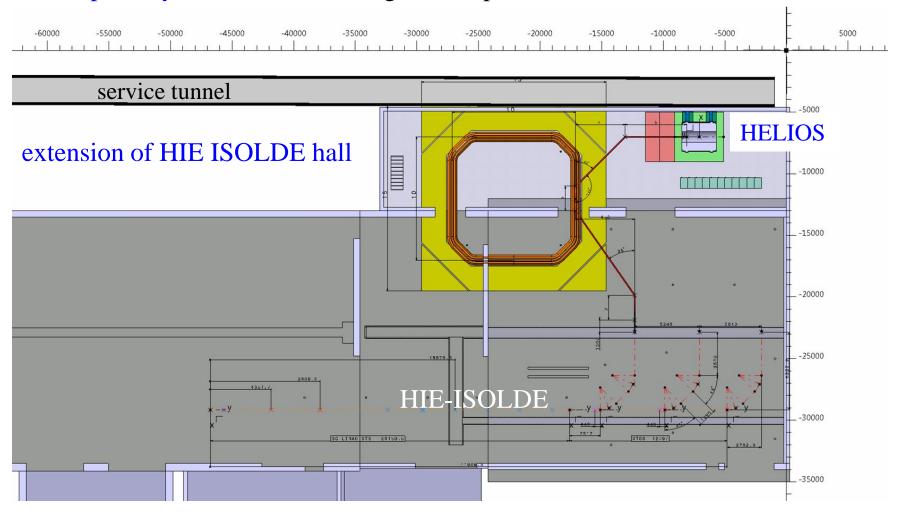
cross section:

 σ =0.02 barn


$$N_{d,0} = 70$$

Multi Charge operation of the TSR

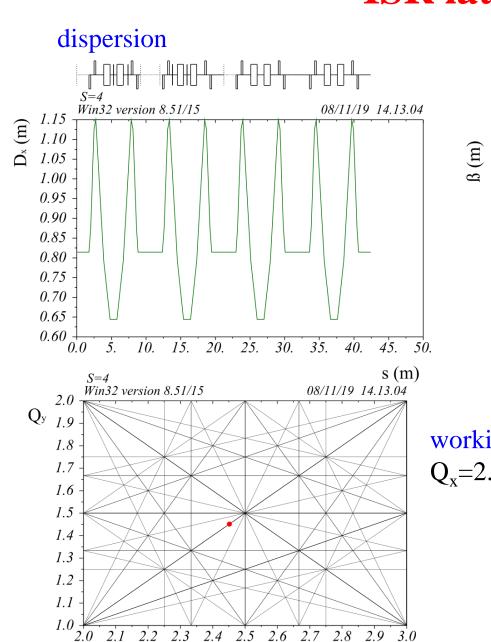
- Storing also daughter nuclei after production needs a relative large momentum acceptance of the storage ring
- At the TSR it was shown that several beams with different rigidities can be stored at the same time


 Confirmation of the multi charge operation at the TSR

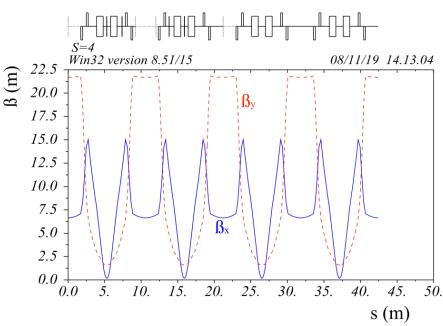
Schottky noise measured 12 s after injection

Possible location of the new storage at HIE-ISOLDE

transparency from Erwin Siesling and Stephane Maridor, CERN



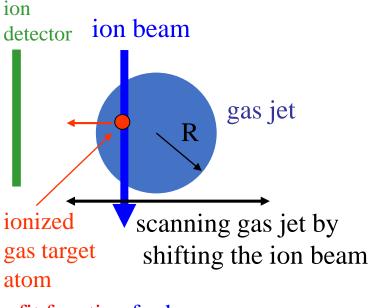
Acknowledgement


Klaus Blaum, MPI für Kernphysik, Heidelberg Jan Borburgh, CERN, Geneva Ana Henriques, CENBG, Gradignan Beatriz Jurado, CENBG, Gradignan Stephane Maridor, CERN, Geneva Akira Noda, NIRS, Chiba Erwin Siesling, CERN, Geneva Fredrik Wenander, CERN, Geneva

Appendix

ISR lattice for S=4

B functions

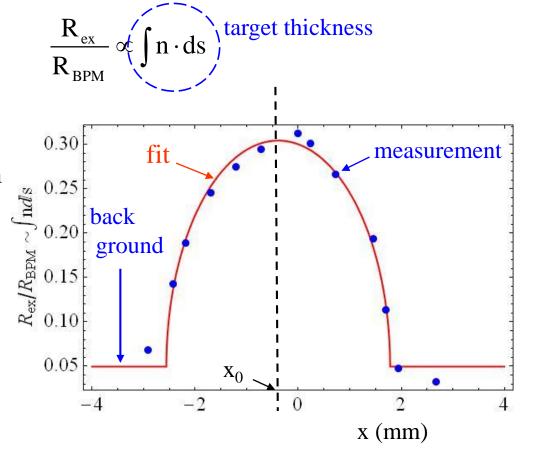

working point

 $\mathbf{Q}_{\mathbf{x}}$

$$Q_x = 2.45, Q_y = 2.45$$

Target thickness profile of an gas jet

schematic assembly


fit function for homogeneous gas density distribution:

$$R_{ex}/R_{BPM} \square \sqrt{R^2-(x-x_0)^2}$$

fits very well for a **homogeneous** target density distribution

 R_{ex} - counting rate ion detector reaction microscope R_{BPM} counting rate beam profile monitor (ion beam intensity normalization)

measured at TSR with 50 MeV ¹²C⁶⁺ for an Ne gas jet target

Life time ⁸⁶Kr³⁶⁺ with H₂ target

```
A = 86 7 = 36
Zahl der Elektronen = 0
E = 860 \text{ MeV} beta = 0.145361
         -11
                                    12
p = 5.10 mbar n = 1.19457 10 1/m^3
Lebensdauer Vielfachstreunung = 27907. s
Lebensdauer Einzelstreung = 884129. s
Lebensdauer Capture = 581.893 s
                             13
Elektronen Dichte = 1.08078 10 1/m^3
Elektronen Strom = 0.05 A
Expansion = 9.3
T(REC) = 139.476 s
Lebensdauer mit ECOOL = 112.494 s
Lebensdauer ohne ECOOL = 569.64 s
```

D:\Dokumente\Vorträge\2019 CERN\Lumi\86Kr836+

electron cature gas target

```
\sigma = 7.05863 \times 10^{-22} \text{ 1/cm}^2
        high reduced energies \sigma = 8.14653 \times 10^{-22} \text{ 1/cm}^2
      Target Lebensdauer
270]:=
       \sigma t = \sigma;
      C0 = 42.4; (* Umfang *)
      f0 = \beta * 3 * 10^8 / C0;
      nt = 1 * 10^14; (* target density *)
      \mathsf{Tt} = \frac{1}{\mathsf{nt} + \mathsf{ot} + \mathsf{fo}};
      Print[" f0 = ", f0, " 1/s"]
       gib aus
       Print[" Lifetime: T = ", Tt, " s"]
      gib aus
        f0 = 1.03289 \times 10^6 \text{ 1/s}
        Lifetime: T = 13.716 s
```

Life time ²³⁸U⁷²⁺ with a He target

electron cature gas target

```
\sigma = 1.88374 \times 10^{-19} \text{ 1/cm}^2
A = 238 Z = 72
                                                                     high reduced energies \sigma = 2.23519 \times 10^{-19} \text{ 1/cm}^2
Zahl der Elektronen = 20
E = 2380 MeV beta = 0.145361
          -11
                                           12
                                                                    Target Lebensdauer
p = 5. 10 mbar n = 1.19457 10 1/m^3
Lebensdauer Vielfachstreunung = 47797. s
                                                                    \sigma t = \sigma;
Lebensdauer Einzelstreung = 1.69283 10 s
Lebensdauer Capture = 96.7844 s
                                   13
                                                                    C0 = 42.4; (* Umfang *)
Elektronen Dichte = 1.08078 10
                                     1/m^3
                                                                    f0 = \beta * 3 * 10^8 / C0;
Elektronen Strom = 0.05 A
                                                                    nt = 1 * 10^14; (* target density *)
Expansion = 9.3
                                                                    Tt = \frac{1}{nt + at + fo};
T(REC) = 32.1738 s
Lebensdauer mit ECOOL = 24.1464 s
Lebensdauer ohne ECOOL = 96.5833 s
                                                                    Print[" f0 = ", f0, " 1/s"]
                                                                     gib aus
                                                                    Print[" Lifetime: T = ", Tt, " s"]
                                                                    gib aus
```

D:\Dokumente\Vorträge\2019 CERN\Lumi\238U72+

Remark:
$$\frac{1}{T_{\text{total}}} = \frac{1}{T_{\text{cap}}} + \frac{1}{T_{\text{strip}}} + \frac{1}{T_{\text{rec}}} + \frac{1}{T_{\text{target}}}$$

Q=72+ is a equilibrium charge state, therefore $T_{\text{strip}}=T_{\text{cap}}$

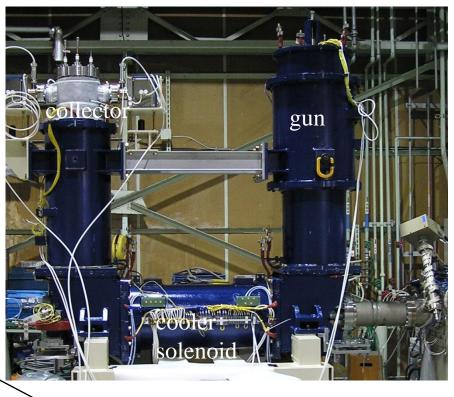
 $f0 = 1.03289 \times 10^6 \text{ 1/s}$

Lifetime: T = 0.0513954 s

ECOOL

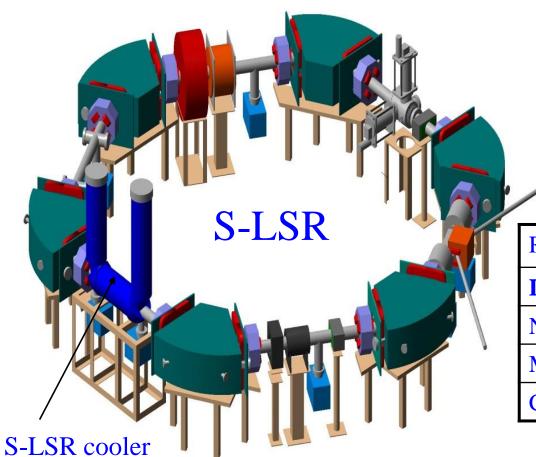
The ISR electron cooler

based on the very compact electron cooler at LSR storage ring


to cool ions with up to 10 MeV/u an electron cooler with electron energies up to 5 keV is required

should be reduced for 10 keV/u

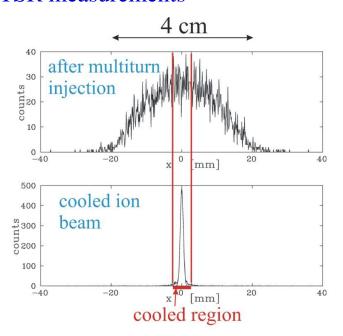
parameter of S-LSR cooler, Kyoto university


Electron Energy	1-5	[keV]
Electron Beam Current	0.05-0.4	[A]
Gun Perveance	2.2	[μΡ]
Cathode Radius	15	[mm]
Expansion Factor	1-3	
Max Field at Cooling/Gun Solenoid	0.5/1.5	[kG]
Field quality in cooling solenoid	10-4	
Toroid Angle	90	0
Toroid Radius	0.25	[m]
Cooler Solenoid Length	0.8	[m]
Effective Cooling Section Length	0.5	[m]
β-function at cooling section	1.7/2.4	[m]

S-LSR cooler

should be increased to 1.5 m

The S-LSR Ring

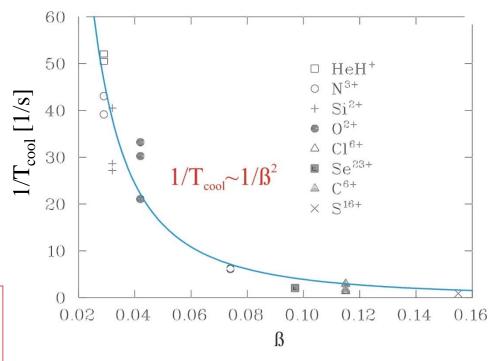

parameter of S-LSR ring

Ring Circumference	22.557 m
Length of Straight Section	1.86 m
Number of Periods	6
Maximum Bending Field	0.95 T
Curvature Radius	1.05 m

- \Rightarrow cooler should fit in a straight section of L= 3.5 m.
- -to decrease cooling time length of cooler solenoid should be increased.
- -two beam position monitors may be possible to place in the same straight section.

Cooling time T_{cool} of a multiturn injected ion beam

TSR measurements

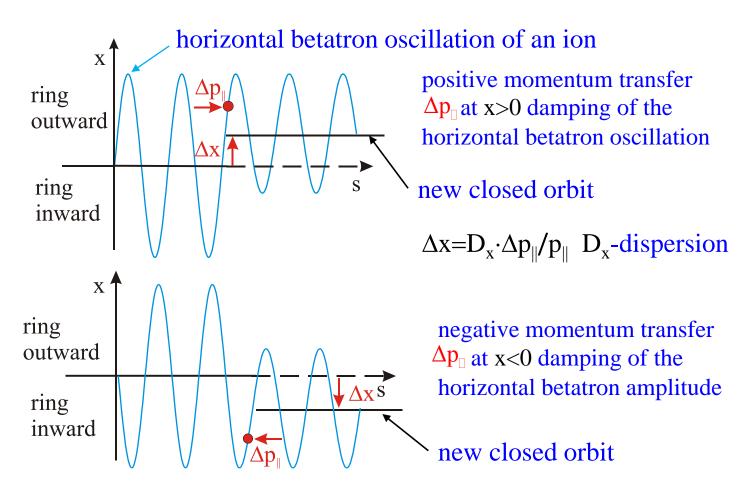

definition of transverse cooling time

The cooling time is the time it takes to cool 80% of the particles outside the cooled region into the marked region

$$T_{\text{cool}} \approx \text{const} \cdot \frac{A \beta^2}{q^2 n_e}$$
 (0.03<\beta<0.16)

inverse cooling time $1/T_{cool}$ as a function of B

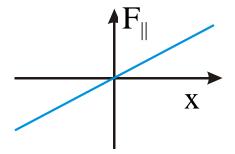
normalized to q^2/A and $n_e=10^8$ cm⁻³

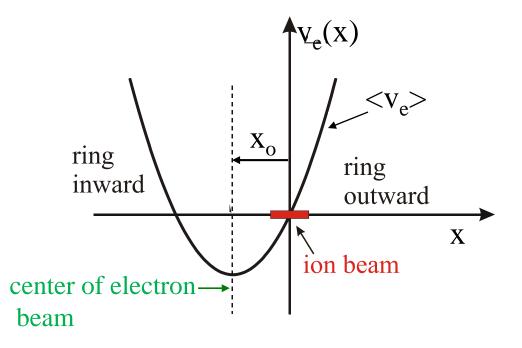


 \Rightarrow for α_{ex} =9.6 and per =1 µperv

$$T_{\text{cool}} \approx \frac{A}{q^2} \cdot 3_{\text{S}} \text{ because } n_e \propto \beta^2$$

Dispersive cooling


Principle of dispersive cooling


 \Rightarrow gradient dF_{||}/dx of the longitudinal friction force can damp or excite the horizontal betatron amplitude

Realization of dispersive electron cooling

gradient of the longitudinal friction force F_{\parallel}

velocity distribution $v_e(x)$ of the electron beam

creating a horizontal gradient of the longitudinal electron cooling force by displacing the electron beam by x_0 :

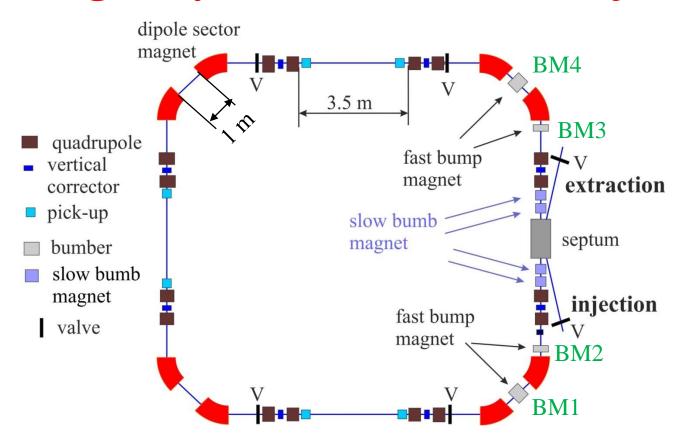
$$x>0: > v_{ion} F_{\parallel}>0$$

 $x<0: < v_{ion} F_{\parallel}<0$

<u>change</u> of the horizontal cooling rate:

$$\Delta_{x} = -\frac{1}{\sigma} \frac{d\sigma}{dt} = \Delta_{0,x} + \Delta_{D,x}$$

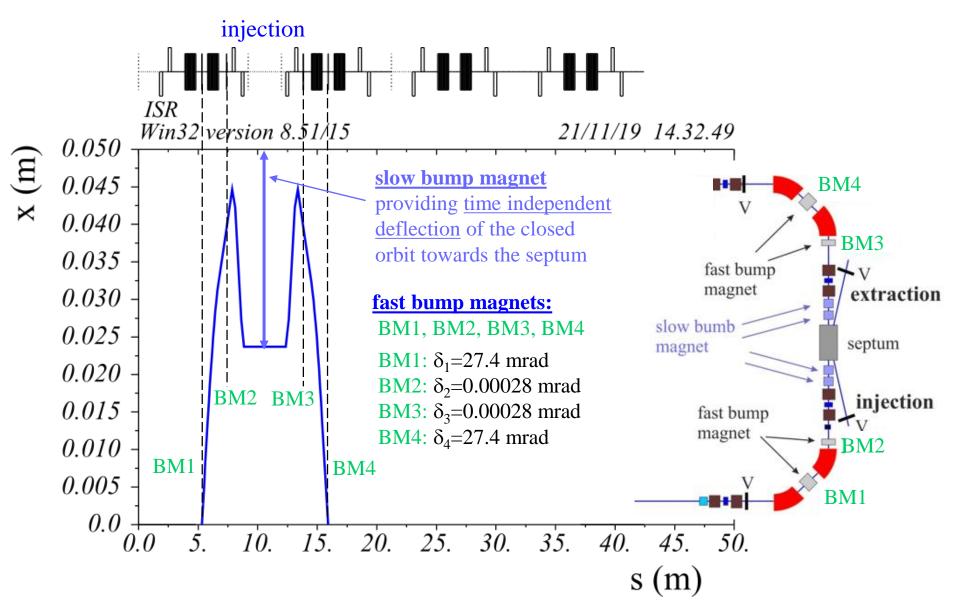
$$\Delta_{\mathrm{D},x} \propto n_{\mathrm{e}} \; \alpha_{\parallel} \; D_{x} \; x_{\mathrm{0}}$$

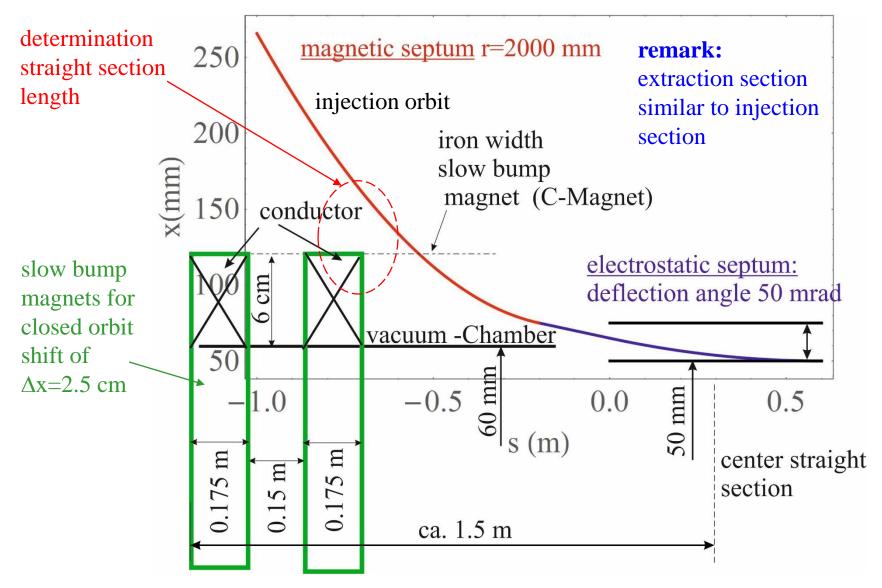

 α_{\parallel} – longitudinal cooling decrement:

$$\alpha_{\parallel} = -\frac{\partial F_{\parallel}}{\partial \Delta v_{\parallel}}$$

 D_x - dispersion in the electron cooler for dispersive cooling D_x =1.63 m

Multi turn Injection


Magnet system for multi-turn injection


slow bump magnets: providing a time independent closed orbit shift towards the electrostatic septum of $\Delta x \approx 2.5$ cm

fast bump magnets: providing a fast shift of the closed orbit towards the electrostic septum of $\Delta x \approx 2.5$ cm, BM1,BM4 large fast bump magnets, BM3,BM4 small fast bump magnets

Injection orbit (standard mode)

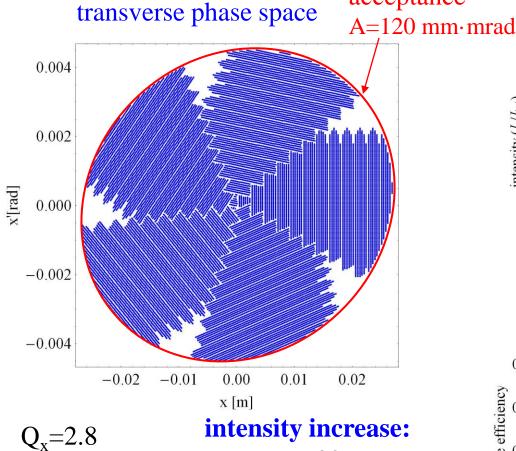
Place requirements of injection and extraction straight section

length of injection extraction straight section: $L \ge 3 \text{ m} \Rightarrow \text{minimum length} = 3.5 \text{ m}$

Preliminary data of the injection components

	electrostatic septum
length	600 mm
gap	25 mm
max voltage U	150 kV
deflection angle	50 mrad
U for 10MeV/u and A/q=3.5	147 kV
E for 10 MeV/u and A/q=3.5	5.88 MV/m

	slow bump magnet
L	175 mm
α	≈ 80 mrad
$B\rho_{max}$	1.5 Tm
B for 1.5 Tm and $\Delta x=2.5$ cm	0.66 T
number	4

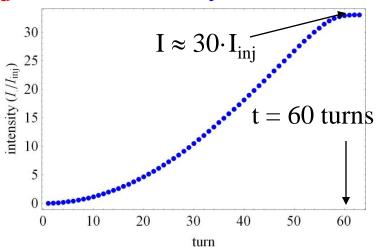

	magnetic septum	
r	2000 mm	
α	≈ 350 mrad	
$B\rho_{max}$	1.5 Tm	
B for 1.5 Tm	0.75 T	

instead of using two magnetic septum's (like TSR) to simplify the injection

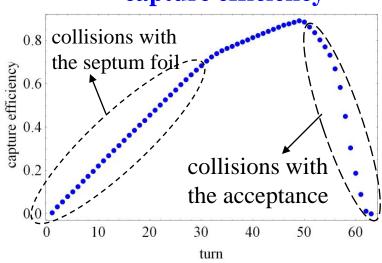
Minimum Length of injection and extraction straight section ≈ 3.5 m

Multiturn injection at TSR@Isolde

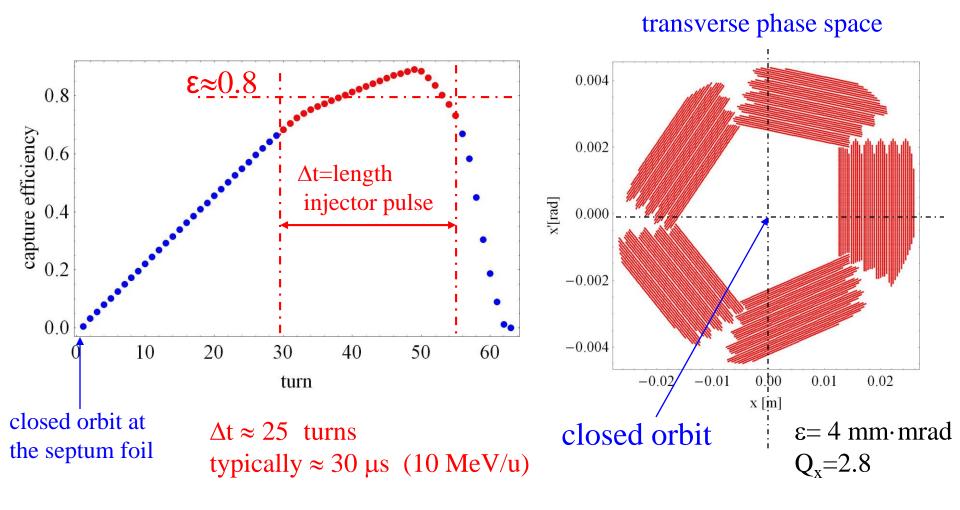
acceptance


$Q_x=2.8$ $\epsilon=4$ mm·mrad Hie Isolde beam typically emittance at 10 MeV/u

 $I \approx 30 \cdot I_{inj}$

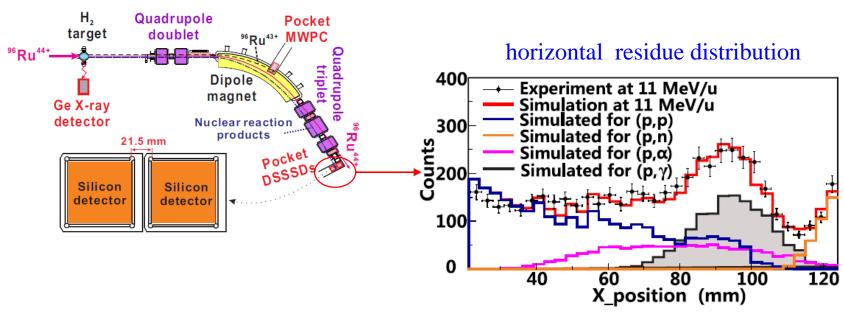

efficiency

≈ 0.5 for injector beam with pulse length t≈60 turns


intensity increase

capture efficiency

Multiturn injection at TSR@Isolde



if $\Delta t \le 25$ turns $\Rightarrow \approx 80$ % of the injected ions can be captured

Proton Pick-up reaction

Proton pick-up reaction at ESR

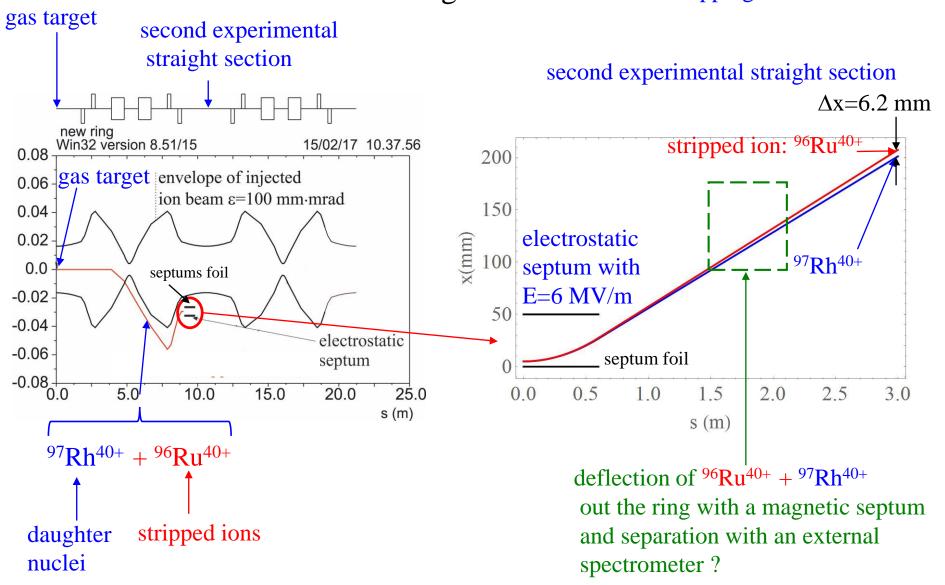
96
Ru⁴⁴⁺ + p \rightarrow 97 Rh⁴⁵⁺ + γ

Disadvantages: - no separation of different reactions

-very broad Rutherford scattered ion distribution with interfere with daughter nuclide from p,γ reaction

To improve the situation

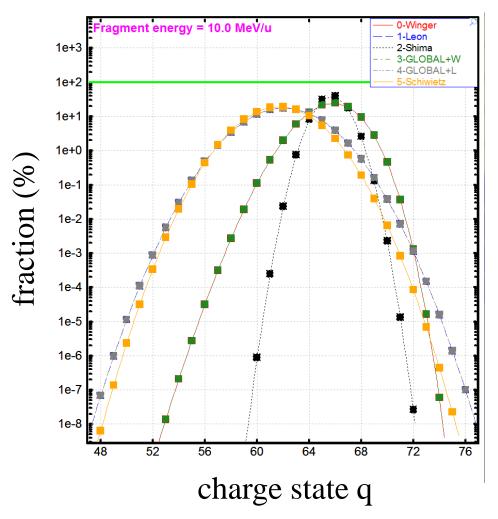
- -To separate Rutherford scatted ions from daughter nuclei a **focal point** at the detector position is required
- Large separation of different reaction products at the detector location


Initial parameters for proton pick-up reaction

```
PDGiD = 1000370870
                                                   ^{86}\text{Kr}^{36+} + p \rightarrow ^{87}\text{Rb}^{37+} + \gamma
 Zr = 37
 Ar0 = 87
                                                            (* main beam *)
 Ionen Masse = 86.8931
                                                            A0 = 86; (* Massennumber *)
                                                            q = 36;
 Main beam
                                                            Z = q;
 7 = 36
                                                            EuA = 10; (* in MeV/u *)
 a = 36
 A0 = 86
                                                            ex = 0.5 * 10^(-6); (* horizontal emittance of stored ion beam in m*rad *)
                                                            ey = 0.5 * 10^(-6); (* vertical emittance of stored ion beam in m*rad *)
 Ionen Masse = 85.8909
                                                            βx = 8.189; (* horizontal beta function in m at target position *) (* S=4 *)
 E_k = 858.909 \text{ MeV}
                                                            βy = 30; (* vertical beta function in m at target position *) (* S=4 *)
 p = 11754.7 \text{ MeV/c}
                                                            \sigma x = \sqrt{\beta x + \epsilon x} + 1000; (* rms value of x in mm *)
 \sigma_{p}/p = 2.35094 \text{ MeV/c}
                                                            \sigma_V = \sqrt{\beta_V \star \epsilon_V} \star 1000; (* rms value ov v in mm *)
 Bo = 1.08915 \text{ Tm}
                                                            \sigma ax = \sqrt{\epsilon x / \beta x}; (* rms value of x' in rad *)
 Proton Referenz Beam
                                                            \sigma av = \sqrt{\varepsilon v / \beta v}; (* rms value ov v' in rad *)
                                                            \sigma pup = 2. * 10^{(-4)}; (* rms value of momentum spread *)
 proton momentum p = 326.519 MeV/c
 Ring Setting
                                                            xshift = 0; (* horizontal shift ion beam *)
 Dipol field = -0.947088 T
                                                            yshift = 0; (* vertical shift of ion beam *)
 Quadrupol Gradient Q1 = -2.4522 T/m
 Ouadrupol Gradient O2 = 3.13873 T/m
                                                            (* Target *)
Target: R = 2 mm
                                                            Rt = 2; (* Target Radius in mm *)
Target: xt = 0 mm
                                                            Dispx = 0 * 1000; (* Disperion in the target position in mm *)
                                                            x0T = 0; (* Target Position in mm *)
Target: D_x = 0. m
                                                            (* Ring *)
 Zahl der Teilchen = 10000
                                                            R = 1.15; (* Radius Dipol Magnet *)
 \eta_{\text{Lumi}} = 0.552608
                                                            Leff = 0.25;
                                                            K1 = -2.251478; (* Quadrupol Familie 1: QDX1 *)
                                                            K2 = 2.881817; (* QuadrupolFamilie 2: QFX1 *)
Version = 13.2.2019
```

Proton pick-up reaction with stripped ion beam

Proton pick reaction with stripped ion beam


example:
$${}^{96}Ru^{39+} + p \rightarrow {}^{97}Rh^{40+} + \gamma$$
 proton pick up reaction ${}^{96}Ru^{39+} + gas \rightarrow {}^{96}Ru^{40+}$ stripping reaction

Proton pick up reaction with ¹⁹⁶Hg⁺

Proton pick-up reaction with Hg

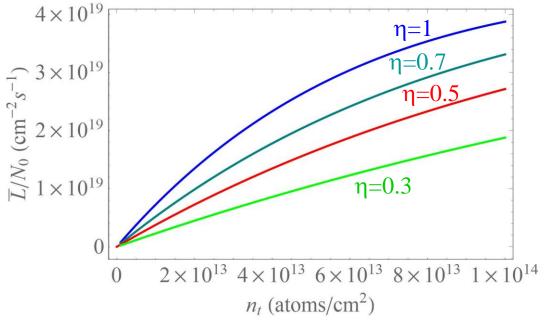
before injection Hg ion beam will be stripped in the HIE ISOLDE stripper at 10 MeV/u charge state distribution of Hg after stripping at 10 MeV/u

calculated with LISE

equilibrium charge state q=62-66

assumption optimum charge state q=64

Hg is not bare! number of electrons: 16


yield of the production of $^{196}Hg^+$ at **ISOLDE** $\approx 7.10^9$ ions/ μ C

⇒ ring can be filled up to **the space charge limit:**

 $N_s \approx 2.2 \cdot 10^8$ ¹⁹⁶Hg⁶⁴⁺ ions for E= 10 MeV/u

Time averaged luminosity

Parameter: beam 196 Hg⁶⁴⁺E=10 MeV/u target: H₂ cycle time T_c = 2 s p=5·10⁻¹¹ mbar vacuum life time with ECOOL: T_v=10 s t_E=0.3 s start of the measurement after injection


```
electron capture target: \sigma_c = 6.505 \times 10^{-21} cm<sup>2</sup> n_t = 4. \times 10^{13} cm<sup>-2</sup> reasonable values \eta = 0.7 target Life time: \tau_c = 5.33037 s vakuum + ECOOL time: \tau_r = 10 s total life time \tau = 3.477 s \Gamma/N_0 = 1.77865 \times 10^{19} cm<sup>-2</sup> s<sup>-1</sup> f_0 = 1.03 MHz
```

Lifetime should not depend on resonances: $N_0 << N_s$ $N_s \approx 2 \cdot 10^8$ choose $N_0 = 5.65 \cdot 10^7 \implies \bar{L} = 10^{27} \, 1/(\text{cm}^2 \, \text{s})$

Storing of the daughter nuclei

Proton capture reaction for the astrophysical p-process

$$^AX^{q+}\!\!+p \longrightarrow ^{A+1}\!Y^{(q+1)+}\!+\gamma$$

1. Nuclear reactions

momentum conservation

$$A m_0 v_p = (A+1) m_0 v$$

$$\Rightarrow v = \frac{Av_p}{(A+1)}$$

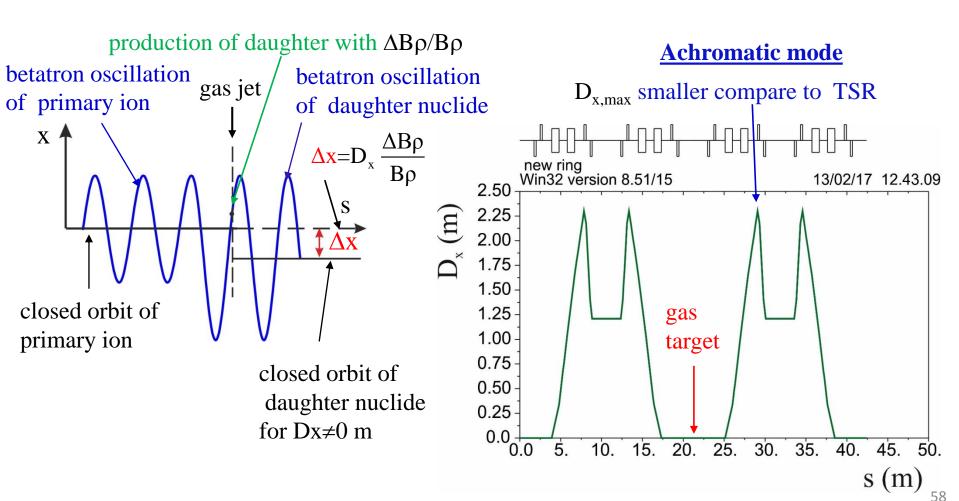
AX^{q+} - stored main ion q- charge state main beam A- mass number $^{A+1}Y^{(q+1)+}$ -daughter nuclide p- proton from hydrogen target

rigidity daughter ion
$$^{A+1}Y^{(q+1)+} \Rightarrow B\rho = \frac{p}{Q} = \frac{A}{(q+1)e_0} m_0 v_p$$
 $\eta_{UC/iQe}$

2. Ionization projectile: ${}^{A}X^{q+} \rightarrow {}^{A}X^{(q+1)+} + e$

rigidity stripped ion
$${}^{A}X^{(q+1)+}$$
 $B\rho = \frac{p}{Q} = \frac{A}{(q+1)e_0} m_0 v_p$ Stripped ion

same rigidity !!!!!


- \Rightarrow rigidities of ${}^{A}X^{(q+1)+}$ and ${}^{A+1}Y^{(q+1)+}$ are equal
- \Rightarrow $^{A}X^{(q+1)+}$ and $^{A+1}Y^{(q+1)+}$ can not separated with magnetic fields!
- \Rightarrow $^{\mathbf{A}}\mathbf{X}^{(\mathbf{q+1})+}$ and $^{\mathbf{A+1}}\mathbf{Y}^{(\mathbf{q+1})+}$ ions are at same detector position

Proton pick up reactions by storing daughter nuclei

example: $Hg^{64+} + p \rightarrow Tl^{65+} + \gamma$ 16 electrons are left!

daughter nuclei Tl65+ should be kept and accumulated in the storage ring

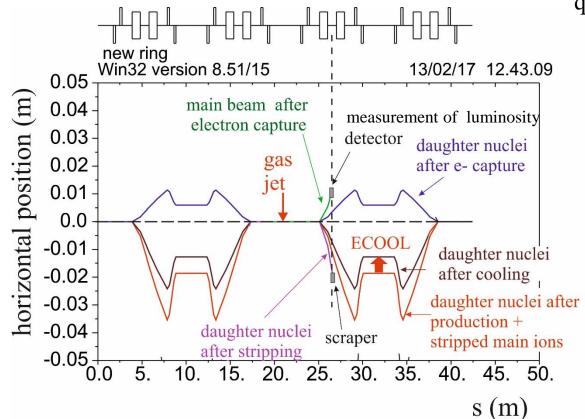
 \Rightarrow storage ring has to operate in an <u>achromatic mode</u> with D_x =0 m in the gas target to avoid excitation of betatron oscillations of the daughter nuclei:

Shift of the ion orbits by electron cooling

reaction:
$$Hg^{64+} + p \rightarrow Tl^{65+} + \gamma$$

direct after injection:

$$v(Tl^{65+}) < v_e$$


$$v(Tl^{65+}) < v_e$$
 $v(Hg^{65+}) = v_e$

with electron cooling:

$$v(T1^{65+}) \to v_e \qquad v(Hg^{65+}) = v_e$$

$$v(Hg^{65+}) = v_{e}$$

change of the rigidity of Tl⁶⁵⁺:
$$\frac{\Delta B \rho}{B \rho} = -\frac{1}{q+1} \rightarrow -\frac{A-q}{A(1+q)}$$

v_e-electron velocity $v(Hg^{65+})$ – velocity of Hg^{65+} v(Tl⁶⁵⁺) - velocity of Tl⁶⁵⁺ A- mass of main beam q- charge of main beam

Beam rigidities

for electron cooling with $D_x=0$ m

for electron cooling with $D_x=0$ m			e- elementary charge
ion	rigidity Βρ=p/(q·e)	relative rigidity ΔΒρ/Βρ	v- electron velocity main beam:
stored cooled ions	$\frac{m_0 A v}{e q}$	0	A- ion mass q- ion charge state
stored ions after electron capture	$\frac{m_0 A v}{e (q-1)}$	$\frac{1}{q-1}$	used to measure luminosity
stored ions after stripping	$\frac{m_0 A v}{e (q+1)}$	$-\frac{1}{q+1}$	same beam rigidity = same orbit
daughter ions after production	$\frac{m_0 A v}{e (q+1)}$	$-\frac{1}{q+1}$ $-\frac{1}{q+1}$ cooling $-\frac{1}{q+1}$	separation of stripped main beam and
daughter ions after cooling	$\frac{m_0(A+1)v}{e(q+1)}$	$-\frac{A-q}{A(1+q)} \stackrel{\bigcirc}{\downarrow} \stackrel{\bigcirc}{\circ} \stackrel{\bigcirc}{\circ}$	daughter ions by electron cooling!
daughter ions after cooling + e capture	$\frac{m_0(A+1)v}{eq}$	$\frac{1}{A}$	— scraping if possible
daughter after cooling + stripping	$\frac{m_0(A+1)v}{e(q+2)}$	$-\frac{-2A+q}{A(2+q)}$	scraping easily possible

m₀- mass unit