

Some physics for accelerated RIBs

REX-ISOLDE and HIE-ISOLDE (evolution...)

spectrometer

beams.

HIE-ISOLDE energy upgrade TDR, Y. Kadi (ed).

Table 1.1: Requested beam characteristics at HIE-ISOLDE.

Beam parameter	Description or value
Energy	continuous from < 0.7 to at least $10 \text{ MeV/}u$
Beam spot diameter	< 1 - 3 mm FWHM
Beam divergence	< 1 - 3 mrad FWHM
Micro-bunch structure ^a	no requirement of micro-bunching to bunch
	at < 1 ns FWHM with ~ 100 ns bunch spacing
Macro-bunch structure ^a	longer pulse lengths or cw operation
Energy spread	< 0.1%
Absolute energy resolution ^b	no specific details given

^a The time structure of the beam is determined by the charge breeder and the REX front end, see Figure 2.4.

b No system currently exists to measure the absolute beam energy; time-of-flight systems are being discussed.

Effusion, diffusion and decay

The combined time structure

Fig. 1. The time structure of the PS-BOOSTER proton pulses is illustrated. A standard proton pulse (N) contains up to 3×10^{13} protons distributed in 20 bunches over 2.4 μ s. In the staggered mode (S) three groups of 5 bunches are extracted at time intervals ranging from 5 to 500 μ s (maximum pulse intensity: 2.2×10^{13} ppp). The maximum proton pulse intensity is obtained by immediate extraction of the last synchrotron (S4).

Semi-continuous beams already from the primary target.

Fig. 6. The ionic current of 190 Hg as recorded with a 0.5 mm metallic needle is shown for different proton beam intensities in the staggered mode (a) 9×10^{12} , (b) 1.5×10^{13} and (c) 2.1×10^{13} proton per pulse. The parameters of the release function from which the release time is calculated were fitted to these data. The timing of the 8 proton pulses in the 19.2 s cycle is shown.

The pulse structure

Fig. 2.4: REX beam time structure. Figure courtesy of J. van de Walle.

The pulse structure

Fig. 2.4: REX beam time structure. Figure courtesy of J. van de Walle.

Target development for future improved yields?

F.Boix Pamies, T.Stora, E.Barbero et al. NIM B https://doi.org/10.1016/j.nimb.2019.06.043

Future Improved Yields?

F.Boix Pamies, T.Stora, E.Barbero et al. NIM B https://doi.org/10.1016/j.nimb.2019.06.043

The principle

Kinematics

Kinematics I

Energy in lab vs scattering angle

Cross section for a 2⁺ and 4⁺ excitation

Sn-110 and Pb-206

Energy spread and beam spot size

HIE-ISOLDE TDR CERN-2018-002-M Y. Kadi, M. A. Fraser A. Papageorgiou-Koufidou (eds.)

	Nominal Energy [MeV/u]	Measured Energy [MeV/u]	Energy Spread [%]
66Ni16+	4.5	4.47	0.2
9Li3+	6.9	6.72	0.5
132Sn31+	5.5	5.49	0.4
78Zn20+	4.3	4.27	0.3

J odriguez el al. priv comm.

Energy spread and beam spot size

HIE-ISOLDE TDR CERN-2018-002-M Y. Kadi, M. A. Fraser A. Papageorgiou-Koufidou (eds.)

B [T], E [MeV/u]

Statistics now and then

Statistics now and then

What is accessible with a generic approach to HIE-infrastructure?

Single particle dominated states

For two particles outside a core:

$$H = \sum_{k=3}^{A} [T_{k} + U(\vec{r}_{k})] + \sum_{k=3}^{A} \sum_{l=k+1}^{A} W(\vec{r}_{k}, \vec{r}_{l}) - \sum_{k=3}^{A} U(\vec{r}_{k})$$

$$+ \sum_{k=1}^{2} [T_{k} + U(\vec{r}_{k})] + \sum_{k=1}^{2} \sum_{l=k+1}^{A} W(\vec{r}_{k}, \vec{r}_{l}) - \sum_{k=1}^{2} U(\vec{r}_{k})$$

$$+ H_{0}^{1} + H_{0}^{2} \text{ independent motion} \qquad H_{12} \text{ interaction}$$

$$H_{12} = \underbrace{\sum_{l=3}^{A} W(\vec{r}_{1}, \vec{r}_{l}) - U(r_{1})}_{\approx 0} + \underbrace{\sum_{l=3}^{A} W(\vec{r}_{2}, \vec{r}_{l}) - U(r_{2})}_{\approx 0} + W(\vec{r}_{1}, \vec{r}_{2})$$

$$= V(\vec{r}_{1}, \vec{r}_{2})$$

Single particle dominated states

$$E = \langle \Phi_{J,T}^{0} | H | \Phi_{J,T}^{0} \rangle = \underbrace{\langle \Phi_{J,T}^{core} | H_{core} | \Phi_{J,T}^{core} \rangle}_{Binding\ energy\ of\ core}$$

$$+ \underbrace{\langle \Phi_{J,T}^{\alpha_{1},\alpha_{2}} | H_{1} + H_{2} | \Phi_{J,T}^{\alpha_{1},\alpha_{2}} \rangle}_{E1+E2\ single-particle\ energies} + \underbrace{\langle \Phi_{J,T}^{\alpha_{1},\alpha_{2}} | V(\vec{r}_{1},\vec{r}_{2}) | \Phi_{J,T}^{\alpha_{1},\alpha_{2}} \rangle}_{Interaction\ energy\ two-body\ matrix\ element}$$

Transfer reactions

Angular momentum transfer: $\mathbf{l} = \mathbf{q} \times \mathbf{R}$, with q the transferred momentum.

Cross section $\sim 1 \text{ mb}$ Target thickness 100 ug/cm² to mg/cm² Intensity $\sim 10^4 \text{ pps}$

One can show that transferred angular momentum maps onto the scattering angle

Angular distributions from (d,p)

Maximum energy

Maximum energy

EBIS current situation

Sn-110, (d,p) kinematics

Particle – γ coincidence and Doppler shift

Recoil detection

TOF spectrometers etc...

M. Rejmund et al. NIMA 621 558 (2010)

New ideas...

Ismael Bravo, Olof Tengblad

Proposal for a design study using SC elements

Explore new design concept using SC coils and RF cavities. Produce a compact, efficient and high-selectivity recoil separator. Study size, weight, efficiency, selectivity, cost and running cost.

Classical design concept

Ring design concept

SC solenoids

- Combined function magnets for bending and focussing
- High fields ~ 8 T

SC RF cavities

- High gradients ~ 10 MV/m
- HTS materials (> 77 K)
- Rebuncher ~ 10 MHz

100 ns Buncher

Resolution in spectrometer and Si-setup

Table 2 Major contributions in keV to the resolution of the excitation energy spectra of single neutron stripping and pickup reactions in inverse kinematics, where the heavy ion is detected in a spectrometer. The detection angle corresponds to 10°_{cm} . The last column is an approximate estimate as a sum in quadrature of the net effect of five non-Gaussian contributions. Other symbols are explained in the text

Reaction	$E_{\rm i}/A$ (MeV)	$ heta_{ m lab}$	Origin of contribution					$\Sigma_{ m quad}$
			$\Delta \theta$	Δp	$E_{ m stragg}$	$\Theta_{1/2}$	dE/dx	
p(12Be, 11Be)d	30	1.07°	172	147	101	74	23	259
p(12Be, 11Be)d	15	1.06°	84	71	99	74	37	169
p(77Kr, 76Kr)d	30	0.16°	1404	811	808	723	56	1952
p(77Kr, 76Kr)d	10	0.10°	334	143	502	570	268	883
d(76Kr, 77Kr)p	10	0.21°	1140	614	2177	1859	1321	3408

Table 3
Major contributions in keV to the resolution of the excitation energy spectra of single neutron pickup and stripping reactions in inverse kinematics, where the light particle is detected in a silicon detector. Symbols as described in text and Table 2

Reaction	E_1/A (MeV)	$ heta_{lab}$	Origin of contribution					$\Sigma_{ m quad}$
			$\Delta \theta$	ΔE_f	ΔE_i	$\Theta_{1/2}$	dE/dx	
p(12Be, d)11Be	30	19.0°	136	74	114	96	649	685
$p(^{12}Be, d)^{11}Be$	15	17.8°	66	72	55	89	984	995
$p(^{77}Kr, d)^{76}Kr$	30	15.0°	124	55	64	63	186	249
$p(^{77}Kr, d)^{76}Kr$	10	6.0°	26	24	23	19	775	777A
$d(^{76}Kr, p)^{77}Kr$	10	155.3°	52	93	37	60	1309	13 6

