Nuclear ground-state properties: new opportunities for nuclear physics and precision tests of fundamental interactions

Magdalena Kowalska
UNIGE and CERN
Outline

- ISOLDE low energy setups
- EPIC upgrades considered
- Examples of regions of nuclear chart that profit
- Examples of physics:
 - weak interactions
 - nuclear structure
 - nuclear astrophysics
ISOLDE low energy setups

- Decay spectroscopy and atomic physics techniques
- Properties of ground-, isomeric-, and excited-states
EPIC upgrades considered

- Increase in proton energy from 1.4 to 2 GeV
- Increase in proton intensity from 2 to 4 uC
- Parallel (low-energy vs HIE-ISOLDE) operation: longer beamtimes
Examples of regions profiting from EPIC

- 100Sn region
- n-deficient lanthanides
- n-deficient Pb region
- 56Ni region
- 35Ar
- 23Mg
- 10C

Selection, Not exclusive

Yield (ions/µC)

- 10^{13} - 10^{12}
- 10^{12} - 10^{11}
- 10^{11} - 10^{10}
- 10^{10} - 10^{9}
- 10^{9} - 10^{8}
- 10^{8} - 10^{7}
- 10^{7} - 10^{6}
- 10^{6} - 10^{5}
- 10^{5} - 10^{4}
- 10^{4} - 10^{3}
- 10^{3} - 10^{2}
- 10^{2} - 10^{1}
- 10^{1} - 10^{0}
- 10^{0} - 10^{-1}
- 10^{-1} - 10^{-2}

Nucleonica, J. Balloff, J.P. Ramos
Fundamental physics: weak interaction studies
Weak interaction: search for scalar currents

- standard model assumption: only vector current for Fermi transitions
 - limit on scalar current from term in Fermi function: \((1 + b_f \times g_1 / \langle E \rangle)\)
 - from \(0^+ \rightarrow 0^+ \beta\) decay: \(b_f = -0.0028 \pm 0.0026\)

- highest sensitivity for low Q-value (= light nuclei) transitions
 - improve on low-Z nuclei
 - improve BR for \(^{10}\text{C}\)
10C and scalar currents

Technique: decay spectroscopy at LA1

Preliminary result:
BR = 1.4517(26) %
(systematic errors to be added)

statistical error: ~ 2 %

EPIC:
- 1.4 -> 2 GeV no significant gain
- gain from multi-production site facility
 => longer beam times

today typical beam times in β-decay experiments: 7 days

production of 10C-16O (mass=26)

main contaminants: 13N-13N and 14O-12C
 => need of high-resolution separation to reduce contaminants
 => avoid general limitation due to overall counting rate
Fundamental physics: \(V_{ud} \)

- \(V_{ud} \): 1st matrix element of CKM quark mixing matrix;

- Determined from:
 - superallowed beta decays \(I = 0+ \rightarrow 0+ \) and mirror isospin 1/2 decays
 - Neutron lifetime; Pion beta decay

- CKM unitarity:
 \[
 |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 + \Delta \\
 \Delta \neq 0 \Rightarrow \text{New Physics}
 \]

- \(<2018: |V_{ud}| = 0.97420(21) \Rightarrow \Delta = -0.00061(47)\) from 14 nuclear superallowed 0+-\(\rightarrow\)0+ decays

- 2018: New corrections (PRL 121, 241804 (2018))\(\Rightarrow\)
 \(\Delta = -0.00158(47) \Rightarrow 3.5 \sigma \text{ from SM}\)

Check \(\Delta\) with another method – nuclear mirror decays:

- largest uncertainty: ratio of Fermi to Gamow-Teller decay (\(\rho\))

 - Average from 7 mirror decays: \(|V_{ud}| = 0.9730(14)|\)

- \(\rho\) and \(|V_{ud}|\) precision can be improved using polarised mirror nuclei
V_{ud} from mirror decay of 35Ar

- Polarisation of 35Ar and 23Mg at the VITO beamline

Goal: measure β-decay asymmetry parameter a_β with 0.5% precision

\Rightarrow determine mixing ratio ρ

$\Rightarrow V_{ud}$ precision around 5×10^{-4} level

1st results: laser polarisation of 35Ar:

- Gain from EPIC:
 - No gain in beam intensity but
 - Longer beamtime and higher proton intensity \Rightarrow more statistics

W. Gins, PhD thesis KU Leuven cds.cern.ch/record/2654181?ln=en
Super-allowed decay of 98In

Fundamental studies: super-allowed β-decay 98In\rightarrow 98Cd

- V_{ud} and CKM unitarity tests
- Experimental precision far from lower-mass cases
- need precise $t_{1/2}$, branching ratio, β-decay energy (Q-value)

Gain: 1.4 \rightarrow 2 GeV: 2-3x increase in yield with LaC$_2$ target
Target and ion source upgrades needed too

Will this be enough?
Nuclear structure
Nuclear structure with low-energy beams

Spin, lifetime, ex. energy, mass, charge radius, magnetic & quadrupole moment

Nuclear force
- Phenomenology
- Chiral effective field theory

Many-body methods
- Ab-initio
- Shell-model
- DFT

Electro-weak currents
- Effective neutron/proton charges
- Microscopic description of effective operators

Status of ab-initio calculations: 2016

- Ca region
 [Hagen et al, Nature Physics 12, 186 (2016)]

- Ni region

- Sn region?

New developments in EFT + Normalization group + many-body methods:

Adapted from R. Garcia
Nuclear structure and *ab initio* theory

ab initio approaches can now address 100Sn

Doubly magic 100Sn (Z=N=50)

- Heavies Z=N magic nucleus
- Strongest Gamow–Teller strength so far measured in all atomic nuclei
- Test-ground for nuclear theory
- Only rough t1/2 and decay scheme known

Gain: 1.4 -> 2 GeV: 2-3x increase in yield with LaC$_2$ target
Target and ion source upgrades needed too
100Sn region: laser spectroscopy

Questions addressed:
- Robustness of $N = Z = 50$ shell closure
- Evolution of properties with changing N
- Ordering of shell-model orbits
- Proton-neutron correlations

Observables:
- Charge radii
- Magnetic moments
- Quadrupole moments
- Spins

SIMULATION 15 SHIFTS

$^{100}{\text{In}}$
$I = (7+)$

SIMULATION 10 SHIFTS

$^{102}{\text{Sn}}$
Towards a ‘universal’ description of charge radii

- \(N=50 \) shell closure probed with MIRACLS

Fayans energy density functional
- very successful along Ca isotopic chain
- reproduces Cd charge radii (OES and global trend) very well, too
- high quality data constraints DFT \(\Rightarrow \) neutron matter & neutron stars
n-deficient lanthanides: nuclear structure

- neutron-deficient lanthanides:
 - search for cluster emission
 - study of proton emitters

- Gain: 1.4 -> 2 GeV: higher yield

- Feasible cases (p-emitters):
 - $^{147}\text{Tm} (Z=69)$: current yield Ta target 200 ions/uC
 - $^{151}\text{Lu} (Z=71)$: current yield TaTh target 1 ions/uC
Neutron-deficient Pb isotopes

- Strong nuclear structure effects observed by spectroscopy:
 - Deformation seen in radii and somehow masses
 - Especially n-deficient Z = 77 to 84 around mid-shell N = 104

- Similar effects with smaller magnitude observed in Au and Hg isotopes

Ch. Boehm et al. PHYS. REV. 90, 044307, (2014)

V. Manea et al. PHYS. REV. C 95, 054322 (2017)
N-deficient Pb region and masses

- Gain: 1.4 -> 2 GeV: 3-5x yield increase with UC\(_x\) target;
- Extension of studies very close to p-drip line possible
Nuclear astrophysics
Rapid-proton capture

Rp process: stellar nucleosynthesis in proton-rich environments
- High temperature, a lot of 1H
- Suggested sites: accreting binary system: neutron star + partner => tail of X-ray flash

End point:
- due to alpha decay and proton emission
- Sn-Sb-Te cycle
- not yet well established

56Ni region and masses

- \(Q(p, \gamma) = m(Z,A) + m_p - m(Z+1,A+1) \)
- \((\gamma, p)\) reaction rate \(\propto e^{-Q(p,\gamma)} \)
- Strong impact on astrophysical observables: \(^{58}\text{Zn}, ^{61}\text{Ga}, ^{62}\text{Ge}, ^{65}\text{As}, ^{66}\text{Se} \)

Gain: 1.4 -> 2 GeV: 2x yield increase with ZrO\(_2\) target

H. Schatz et al., The Astrophysical Journal, 884:139 (11pp)
100Sn region

End of rp process due to Sn-Sb-Te cycle:

- $^{98}\text{Cd}, ^{99-101}\text{In} \Rightarrow$ strong impact on composition of X-ray burst ashes

Need:
- $t_{1/2}$
- β-delayed p branching ratios
- masses

Gain: 1.4 -> 2 GeV: 2-3x increase in yield with LaC$_2$ target
Target and ion source upgrades needed too

From D. Yordanov
Summary

ISOLDE low-energy physics will profit from **EPIC upgrades:**
higher yields, longer beamtimes, and cleaner beam

Examples:
- Weak-interaction studies: 10C, 23Mg, 35Ar, (98In reachable?)

- Nuclear-structure:
 - Closed shells and tests of nuclear theory: 100Sn, n-deficient Pb
 - Mid-shell and p-emitters: n-deficient lanthanides

- Nuclear astrophysics:
 - rp process: 56Ni and 100Sn regions

Thanks for your attention

Thanks for the input from:
D. Atanasov, B. Blank, R. Garcia, S. Malbrunot, M. Mougeot, A. Vernon
Motivation:

- Nuclear structure: doubly magic 100Sn (Z=N=50)
 - strongest Gamow–Teller strength so far measured in all atomic nuclei
 - Test-ground for nuclear theory
 - Only rough t1/2 and decay scheme known

- Nuclear astrophysics: rapid proton capture
 - end of rp process due to Sn-Sb-Te cycle
 - need t1/2 and β-delayed p branching ratios

- Fundamental studies: super-allowed β-decay 98In-> 98Cd, CKM unitarity tests
 - need precise t1/2, branching ratio, β-decay energy (Q-value)

Gain: 1.4 -> 2 GeV: 2-3x increase in yield with LaC₂ target
100Sn region

Motivation:

- Nuclear structure: doubly magic 100Sn (Z=N=50)
 - strongest Gamow–Teller strength so far measured in all atomic nuclei
 - Test-ground for nuclear theory
 - Only rough t1/2 and decay scheme known

- Nuclear astrophysics: rapid proton capture
 - end of rp process due to Sn-Sb-Te cycle
 - need t1/2 and b-delayed p branching ratios

- Fundamental studies: super-allowed β-decay 98In→ 98Cd, CKM unitarity tests
 - need precise t1/2, branching ratio, β-decay energy (Q-value)

Gain: 1.4 → 2 GeV: 2-3x increase in yield with LaC₂ target
100Sn

- RIKEN, 2500 nuclei in total
- GSI, 2012, 260 nuclei in total

Nature 486, 344 (2012)
Laser spectroscopy in a trap

- Trap ⇒ long observation time ⇒ higher sensitivity ⇒ more exotic nuclides accessible

MR-ToF devices:
- **F. Wienholtz et al., Nature 498, 346 (2013)**

Novel approach for collinear laser spectroscopy:
- Ion trap ⇒ long observation time
- 30 keV beam ⇒ high resolution

![Simulation](image)
Fundamental physics: V_{ud}

V_{ud}: 1st matrix element of CKM quark mixing matrix;

Determined from:
- superallowed beta decays $I = 0^+ \rightarrow 0^+$ and mirror isospin $1/2$ decays
- Neutron lifetime; Pion beta decay

CKM unitarity:

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 + \Delta$$

$\Delta \neq 0 \Rightarrow$ New Physics

<2018: $|V_{ud}| = 0.97420(21) \Rightarrow \Delta = -0.00061(47)$
from 14 nuclear superallowed $0^+ \rightarrow 0^+$ decays

2018: New corrections (PRL 121, 241804 (2018)) =>
$\Delta = -0.00158(47) \Rightarrow 3.5 \sigma$ from SM

Check Δ with another method – nuclear mirror decays:
largest uncertainty: ratio of Fermi to Gamow-Teller decay (ρ)

Average from 7 mirror decays: $|V_{ud}| = 0.9730(14)$

ρ and $|V_{ud}|$ precision can be improved using polarised mirror nuclei
Goal: measure β-decay asymmetry parameter a_β with 0.5% precision

=>ρ determine mixing ratio

=>V_{ud} precision around 5×10^{-4} level

Our 1st results: laser polarisation of 35Ar:

![Graph showing laser detuning vs. asymmetry percentage]

Project together with N. Severijns and G. Neyens, KU Leuven

W. Gins, PhD thesis KU Leuven cds.cern.ch/record/2654181?ln=en