HIE ISOLDE RECOIL SEPARATOR

Wednesday, December 4, 2019

PRELIMINARY AGENDA

- 1. Present status of the project
- 2. White Book/Nuclear Physics program
- 3. Preparation of LoI for next INTC meeting (Feb 2020)
- 4. Beam dynamics, Magnets and Cryogenics
- 5. Next actions
- 6. AOB

1. Present status of the project

Collaboration

<u>I. Martel^{1,3},</u> J.L. Aguado¹, M. Assie², M.A.M. Al-Aqeel^{3,21}, R. Berjillos⁴, M.J.G. Borge⁵, L. Bottura⁶, W. Catford⁷, J. Cederkall⁸, T. Davinson⁹, G. De Angelis¹⁰, T. Ekelof¹¹, A.P. Foussat⁶, , L. Gaffney³, E. Galanis¹², C. García-Ramos¹, H. Glass¹², K. Johnston⁶, T. Junquera¹³, O. Kochebina¹³, T. Kurtukian-Nieto¹⁴, M. Losasso⁶, A. Laird¹⁵, J. L. Muñoz¹⁶, B.S. Nara Singh¹⁹, G. Neyens⁶, D. O'Donnell¹⁹, R. D. Page³, J.A. Rodriguez⁶, J. Resta-López³, V. Rodin¹⁸, J. Sánchez-Segovia¹, K. Riisager¹⁷, A.M. Sánchez-Benítez¹, J. Sánchez-Segovia¹, B. Shepherd¹⁸, E. Siesling⁶, J. Smallcombe³, O. Tengblad⁵, D. Tommasini⁶, J. Uusitalo²⁰, C.P. Welsch³.

- 1. Univ. Huelva, Spain.
- 2. IPNO, Univ. Paris-Sud, Orsay, France.
- 3. Univ. Liverpool, United Kingdom.
- 4. TTI Norte, Santander, Spain.
- 5. IEM-CSIC, Madrid, Spain.
- 6. CERN, Geneva, Switzerland.
- 7. Univ. Surrey, United Kingdom.

- 8. Univ. Lund, Sweden.
- 9. Univ. Edinburgh, United Kingdom.
- 10. LNL-INFN Legnaro, Italy.
- 11. Uppsala University, Sweden.
- 12. PARAGRAF, Somersham, United Kingdom.
- 13. ACS, Orsay, France.
- 14. CENGB, Gradignan, France.

- 15. Univ. York, United Kingdom.
- 16. ESS-BILBAO, Bilbao, Spain.
- 17. Univ. Aarhus, Denmark.
- 18. Cockcroft Institute, Daresbury, United Kingdom.
- 19. Univ. West Scotland, United Kingdom.
- 20. Univ. Jyvaskyla, Finland.
- 21. IMIS Univ., Riyadh, Saudi Arabia.

Google-drive

Web-site

Conceptual design

Superconducting Recoil Separator for HIE-ISOLDE

To meet the physics program needs, a high-resolution recoil separator based on a **compact** superconducting (SC) mini-ring storage system has been proposed [1].

A proof-of-concept preliminary design features a Φ = 1.5 m diameter ring built up of multifunction SC magnets [2] of δ = 25 cm length (MFSCM) in a Fixed-Field Alternating-Gradient (FFAG) configuration. The MFSCMs should be able to withstand magnetic fields as high as 4 to 6 T. HTS materials and cryocooler systems are being considered in the design.

Reaction fragments circulate up to τ ~ 1 µs being differentiated by their cyclotron frequency. Various techniques of operation are under study.

In the simplest mode, the ions are extracted, identified and quantified in a focal plane detector by Time-of Flight (ToF) and Energy Loss in Gas - Si detectors. Digital Pulse Shape Analysis (DPSA) techniques will help to deal with the most challenging cases. Preliminary beam dynamics studies are ongoing [3].

Simulated example

d(²³³Ra,²³⁴Ra)p @ 10 MeV/u ²³³Ra,²³⁴Ra -ToF separation ~ 40 ns (10 turns)

- [1] I. Martel. 84th ICC meeting. CERN, March 2019.
- [2] C. Bontoiu et al., IPAC-2015, WEPMN051
- [3] J. Resta –López, Nucl. Inst. Meth. A in preparation

XT03 Beam line @ HIE-ISOLDE

Project participants – Design study - EU application 2020

- 1. CSIC-MADRID, SPAIN
- 2. UNIVERSITY OF HUELVA, SPAIN
- 3. UKRI-STFC, UK
- 4. ISOLDE-CERN, CERN, SWITZERLAND
- 5. UNIVERSITY OF LIVERPOOL, UK
- 6. COCKCROFT INSTITUTE, UK
- 7. UNIVERSITY OF LUND, LUND, SWEDEN
- 8. CENBG, BOURDEUX, FRANCE
- 9. UNIVERSITY OF WEST SCOTLAND, UK
- 10. UNIVERSITY OF AARHUS, DENMARK
- 11. UNIVERSITY OF UPPSALA/FREIA, SWEDEN
- 12. ESS-BILBAO, SPAIN
- 1. ACS, FRANCE
- 2. TTI NORTE, SPAIN
- 3. PARAGRAF, UK

WP1	Project Coordination and Management	WP5	Construction of prototypes			
WP2	System specifications and selection of technologies	T5.1	Beam transport line			
T2.2	Physics case/White book	T5.2	Multiharmonic buncher			
T2.3	Conceptual design and critical components	T5.3	Solid State Power Amplifier			
WP3	Design study of the spectrometer	T5.4	Multifunction magnets			
T3.1	Beam dynamics FFAG	T5.5	Magnetic probes			
T3.2	Charge breeder development	T5.6	Magnet test bench			
T3.3	Beam transport (SEC)	T5.7	Cryostat, cryogenic system, control			
T3.4	Multiharmonic buncher	T5.8	Integration/preliminary test			
T3.5	Solid State Power Amplifier	WP6	Local systems, integration and installation			
T3.6	Re-buncher	T5.1	Standard beam instrumentation			
T3.7	RF and LLRF systems	T5.2	Vacuum systems			
T3.8	Superconducting multifunction magnet design	T5.3	Integration mechanical systems			
T3.9	Magnetic probes	T5.4	Installation			
T3.10	Magnet test bench design	T5.5	Safety			
T3.11	Injection/extraction system	WP7	Prototype evaluation			
T3.12	Cryostat, cryogenic system, control	T7.1	Testing plan and initial machine studies			
T3.13	Standard beam instrumentation	T7.2	Integration control systems			
T3.14	Specialized beam instrumentation	T7.3	Hardware commissioning			
T3.15	Safety: machine protection	T7.4	Stable beam commissioning			
T3.16	Safety: personal protection	T7.5	Radioactive beam commissioning			
T3.17	Budget and timeline	T7.6	Initial operations			
WP4	Design study of physics detectors	T7.7	Data acquisition software			
T4.1	Focal plane detectors and ancilliary systems	T7.8	Data analysis			
T4.2	Control system and DACQ for physics detectors	WP8	Exploitation and dissemination			

Calendar (previous version)

	м	т	w	т	F	s	s	м	т	w	т	F	s	s
OCTOBER		1	2	3	4	5	6	7 Start	8	9	10	11	12	13
	14	15	16	17	18	19	20	21	22	23	24	25	26	27
NOVEMBER	28	29	30	31	1	2	3	4	5	6		8 Section 3	9	10
	11	12	13	14	15	16	17	18	19	20	21	22	23	24
DECEMBER	25	26	27	28	29	30	1	2	3	4		6 Section 2	7	8
	9	10	11	12	13	14	15	16	17	18	19	20	21	22
JANUARY	23	24	25	26	27	28	29	30	31	1		3 Section 1	4	5
	6	7	8	9	10	11	12	13	14	15	16	17	18	19
FEBRUARY	20	21	22		24 Section 4/5	25	26	27	28	29		31 Complete document	1	2
	3 Start revision	4	5	6	7	8	9	10	11	12	13	14 End revison	15	16
	17	18	19	20	21	22	23	24	25	26	27	28	29	1

- Delay: several meetings to improve definition and scope during previous 2 months
- Physics cases
- Calendar of deliveries must be shifted forward by ~ 8 weeks
 April 2020

Budget for design study

- 3 Meuro max.
- Participants should finish uploading costs
- CERN budget

2. White Book/Nuclear Physics program

Contact: Teresa Kurtukian-Nieto,

CENGB, Gradignan, France.

Mass	< 50	50 – 120	110 - 150	150 - 200	> 200
Contact	M. Aussie, IPNO	Joakim Cederkall	Giacomo d'Angelis	Teresa Kurtukian-Nieto	Liam Gaffney
	I. Martel, Huelva	Lund	INFN-LNL	CENGB	Liverpool

	Direct reactions	Inelastic	Transfer Few/Multi	Coulex	Deep inelastic	Fusion- Evaporation	Focal plane decay	Beyond HIE-ISOLDE
Structure		X	X	X		X	Χ	X
Dynamics	Χ		Χ		X	X		
Astrophysics			X				X	X

3. Preparation of LoI for next INTC meeting (Feb 2020)

In addition to the ongoing review of status reports at ISOLDE, the INTC is requesting **letters of intent** for new experiments or collaborations which intend to **occupy space in the ISOLDE hall** in the coming years or for existing experiments that intend to increase their current **space allocation**.

These letters should indicate **future plans** with a summary of **expected space requirements** along with a brief indication of the future **physics programme** and the **status** of the current collaboration. They should be **5-6 pages maximum**. In general letters of intent do not require a presentation to the committee. If, in special cases it is judged necessary, the spokesperson will be contacted in advance of the meeting.

ISOLDE and Neutron Time-of-Flight Experiments Committee (INTC)

Dates for 2020

Wednesday and Thursday, 5-6 February Wednesday and Thursday, 1-2 July **Tuesday and Wednesday**, 3-4 November

4. Beam dynamics, Magnets and Cryogenics

WP2: Baseline design

Connection from beampipe (~4K) to outside (~300K)

Common vacuum (HIE-ISOLDE ctostats)

High thermal-resistive connection (LHC)

Test LHe and Cryocooler option

Magnets: Q + D

• Beampipe diameter: 110 -150 mm

Dipole strength: 1.5 Tm

Quadrupole strength: 40 T/m

Max peak field: 5 T

Typical magnet geometry:

Total length 500 mm

3 magnets, in series, Bending angle 30°

Common cryostat

R=1 m

Max outer diameter (including shielding): 650 mm

FFAG Cosine canted coils

5. Next actions

- Lol for INTC
- Meet with CERN

6. AOB