Results from NA62

R. Fantechi INFN - Sezione di Pisa and CERN on behalf of the NA62 Collaboration

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax GMU, Ferrara, Florence, Frascati, Glasgow, Lancaster, Liverpool, Louvain-la-Neuve, Mainz, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, TRIUMF, Turin, Vancouver (UBC) ~200 participants

> FPCP 2020 June 8th-12th, 2020

Kaon decays at CERN

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: clean theoretical environment

FCNC loop processes: s->d coupling Highest CKM suppression

Very clean theoretically No hadronic uncertainties Hadronic matrix element related to the precisely measured BR ($K^+ \rightarrow \pi^0 e^+ v$)

SM predictions [Buras et al. JHEP 1511 (2015) 33]

$$BR(K^{+} \to \pi^{+} \nu \overline{\nu}) = (8.39 \pm 0.30) \cdot 10^{-11} \cdot \left(\frac{V_{cb}}{0.0407}\right)^{2.8} \cdot \left(\frac{\gamma}{73.2^{0}}\right)^{0.74} = (0.84 \pm 0.10) \cdot 10^{-10}$$
$$BR(K^{0} \to \pi^{0} \nu \overline{\nu}) = (3.36 \pm 0.05) \cdot 10^{-11} \cdot \left(\frac{V_{ub}}{0.00388}\right)^{2} \cdot \left(\frac{V_{cb}}{0.0407}\right)^{2} \cdot \left(\frac{\sin \gamma}{\sin 73.2^{0}}\right)^{0.74} = (0.34 \pm 0.06) \cdot 10^{-10}$$

 $K \to \pi \nu \nu$ are the most sensitive probes to NP models among B and K decays

The combined measurement of K⁺ and K_L modes could shed light on the flavour structure of NP (Δ S=2 / Δ S=1 correlation)

$K \rightarrow \pi v \overline{v} NP$ sensitivity

Previous status of $\mathrm{K^{\!+}} \rightarrow \pi^{\!+} \nu \overline{\nu}$

E787/E949 @Brookhaven: 7 candidates $K^+ \rightarrow \pi^+ v \bar{v}$ 2 experiments, stopped kaon technique Separated K⁺ beam (710 MeV/c, 1.6MHz) PID: range (entire $\pi^+ \rightarrow \mu^+ \rightarrow e^+$ decay chain) Hermetic photon veto system

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$$

Phys. Rev. D77,052003 (2008), Phys. Rev. D79,092004 (2009)

(m) 45

40

35

30

25

20

15

This analysis E949-PNN1

Range

E787/E949

50 60 70 80 90 100 110 120 130 140 150

Energy (MeV)

NA62 goals and challenges

- Measurement of the $K^{+} \rightarrow \pi^{+} \nu \nu$ branching ratio
 - This requires at least 10¹³ Kaon decays
 - In-flight decay technique
 - 75 GeV/c beam helps in background rejection
 - Event selection with P_{π} <35 GeV/c
 - i.e. $K_{\pi 2}$ decays have around more than ~40 GeV of electromagnetic energy
 - O(10¹²) rejection factor of common K decays

Good tracking devices

Particle identification

Accurate measurement of the kaon momentum Accurate measurement of the pion momentum Missing mass cut: $O(10^5)$ rejection on $K_{\mu 2}$, $O(10^4)$ on $K_{\pi 2}$

Veto detectors

Photons: to reduce the background by a factor of 10^8 Muons: add a rejection factor of $O(10^5)$

Identify kaons in the beam Identify positrons Additional π/μ rejection [O(10²)]

Precise sub-ns timing

Kaon-pion time association To reduce pileup

The NA62 detector

The NA62 detector

NA62 runs

2014: Pilot run

2015: Commissioning run

2016: Commissioning and physics run

Result published: Phys. Lett. B 791 (2019) 156 arXiv.1811.08508

2017: 160 days of data taking

This talk, paper in preparation

2018: 217 days of data taking

Analysis on going

R. Fantechi - FPCP 2020 - June 9th 2020

• Define two regions in m_{miss}^2 to accept candidate events • 65 m long decay fiducial region, 15 < $P\pi$ < 35 GeV/c • Particle ID (Cherenkov detectors, calorimeters)

K⁺ decay in-flight

Signature: one incident kaon, 1 charged output track

• Missing mass distributions: $m_{miss}^2 = (P_K - P_{track(hyp \pi^+)})^2$

Photon Veto

•Backgrounds:

- Accidental beam activity
- •K+ decay modes:

$K^{+} \rightarrow \pi^{+}\pi^{0} (\gamma)$	Br = 0.2067
$K^{+} \rightarrow \mu^{+} \nu (\gamma)$	Br = 0.6356
$K^{\star} \rightarrow \pi^{+}\pi^{+}\pi^{-}$	Br = 0.0558
$K^{+} \rightarrow \pi^{+}\pi^{-}e^{+}\nu$	Br = 4.25*10 ⁻⁵

2017 data analysis

- 19·10¹¹ ppp on target
- $2 \cdot 10^{12}$ K⁺ decays useful for $\pi v v$
- Blind analysis procedure
 - Signal and control regions kept masked for the whole analysis
- Main trigger streams:
 - $\pi v v$, control
- Offline analysis
 - $\pi v v$ sample
 - Control samples
 - $\mathbf{K}^{+} \rightarrow \pi^{+}\pi^{0}$
 - $K^+ \rightarrow \mu^+ \nu$
 - $K^+ \rightarrow \pi^+ \pi^+ \pi^-$

Analysis steps

- Selection
- Determination of single event sensitivity (SES)
- Estimation and validation of the expected background
- Un-blinding of the signal regions and results

Kaon decay selection

- Selection
 - K⁺ decay into one charged particle
 - π^+ identification
 - Photon rejection
 - Multi track rejection
- Performances
 - GTK-KTAG-RICH timing: O(100 ps)
 - π⁺ ID: ε_μ = 10⁻⁸; ε_{π+} ~64%
 - π^0 rejection $\varepsilon_{\pi 0}$ = ~1.4 $\cdot 10^{-8}$
 - $\sigma(m^2_{miss}) \sim 10^{-3} \, GeV^2/c^4$

Selected K^+ decays, before π^+ id and γ /multi rejection

R. Fantechi - FPCP 2020 - June 9th 2020

Data after selection

Single Event Sensitivity (SES)

- Determine Kaon flux from $K^* \rightarrow \pi^+ \pi^0$ selected with control trigger (downscale 400)
- Use the same $\pi\nu\nu$ selection, but without photon and multiplicity rejection and with missing mass cut modified

Single Event Sensitivity (SES)

Integrated over beam intensity and $\pi^{\scriptscriptstyle +}$ momentum

$$SES = (0.389 \pm 0.021) \times 10^{-10}$$

$$N_{\pi\nu\nu}^{\rm exp} = 2.16 \pm 0.12 \pm 0.26_{ext}$$

External error from BR = 0.84 ± 0.10

Error budget			
Source	Uncertainty (10 ⁻¹⁰)		
LO trigger	± 0.015		
Acceptance	± 0.012		
Random veto	± 0.008		
L1 trigger	± 0.003		
Normalization background	negligible		

K^+ → $\pi^+\pi^0$ (γ) and K^+ → $\mu^+\nu$ background

$K^{+} \rightarrow \pi^{+}\pi^{-}e^{+}\nu$ (K_{e4}) background

- Measured branching ratio: $4.247(24) \cdot 10^{-5}$
- Topology-correlated kinematics spanning Region 2
- MC-based background estimation, 2.109 events generated
- Validation of MC done with data using enriched $K^+ \rightarrow \pi^+\pi^-e^+\nu$ sample

$$N_{Ke4}^{bg} = 0.12 \pm 0.05_{st} \pm 0.03_{sy}$$

R. Fantechi - FPCP 2020 - June 9th 2020

Upstream background

Background summary

Process	Expected events in R1+R2
$K \rightarrow \pi \nu \nu$ (SM)	$2.16 \pm 0.12_{stat} \pm 0.26_{ext}$
Total Background	$1.5 \pm 0.2_{stat} \pm 0.2_{syst}$
$K^{\star} \to \pi^{+} \pi^{0} \; (\gamma)$	0.29 ± 0.03 _{stat} ± 0.03 _{syst}
$K^{+} \rightarrow \mu^{+} \nu (\gamma)$	0.15 ± 0.02 _{stat} ± 0.04 _{syst}
$K^{\star} ightarrow \pi^{+}\pi^{+}\pi^{-}$	0.02 ± 0.02 _{syst}
$K^{+} \rightarrow \pi^{+}\pi^{-}e^{+}v$	0.012 ± 0.05 _{stat} ± 0.03 _{syst}
$K^{\star} \rightarrow \ell^{+} \pi^{0} \nu$	Negligible
Upstream background	0.9 ± 0.2 _{stat} ± 0.2 _{syst}

Opening the box

$K^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} \nu \nu$ 2016+2017 result

	2017	2016
Observed candidates	2	1
Single event sensitivity	(0.389 ± 0.021)·10 ⁻¹⁰	(3.15 ± 0.24)·10 ⁻¹⁰
Expected SM signal	2.16 ± 0.12 ± 0.26 _{ext}	$0.27 \pm 0.02 \pm 0.03_{ext}$
Expected background	1.5 ± 0.3	0.15 ± 0.09

Upper limits (CLs methods)ObservedExpected (bkg only)BR(K $\rightarrow \pi \nu \nu$) < 1.85·10⁻¹⁰ @ 90% CLBR(K $\rightarrow \pi \nu \nu$) < 1.32·10⁻¹⁰ @ 90% CL

Two sides 68% band BR($K \rightarrow \pi v v$) = (0.47^{+0.72}_{-0.47})·10⁻¹⁰

$K^+ \rightarrow \pi^+ \nu \nu$ 2016+2017 result

Analysis improvements

- The used event selection aimed for the highest background rejection
 - Strong cuts, acceptance reduced to a few %
- Reoptimization of the analysis to improve signal efficiency:
 - Optimization of signal region and optimization of PID
 - Improvements of selection against upstream background
- Signal improvement by a factor ~2
- Background level scales accordingly
- More optimizations being studied
 - Improvement of upstream background using a BDT with pion informations
 - Improve the K- π matching, with a better likelihood or with neural networks
 - Reduce the random veto (42% loss in 2018) by
 - optimising photon rejection in LAV
 - developing LKr reconstruction specific for veto purpose
 - refining event reconstruction in small angle calorimeters
 - optimising multiplicity rejection algorithm

Improvements for the next runs

- Few additions to the experimental setup
 - Rearrangement of the beam line around the achromat and addition of a $4^{\rm th}\,GTK$ station
 - To improve the efficiency of K- π matching
 - To improve the rejection of the upstream background
 - Addition of a veto counter before and after the final collimator
 - To improve the rejection of the upstream background
 - Installation of a large scintillator tile hodoscope in front of the decay volume
 - To improve background rejection in dump mode
 - To reduce the trigger rate in some rare decay modes
 - Addition of a second HASC module
 - To further reduce photon background
- Plan to run from 2021 to 2024

$\pi^0 \rightarrow \text{invisible}$

- In the SM, $BR(\pi^0 \rightarrow \nu\nu) \sim O(10^{-24})$, so any observation $\rightarrow BSM$
- Present limit is 2.7.10⁻⁷ at 90% CL, from BNL experiments
- Profit from hermetic photon veto
- Same $\pi\nu\nu$ selection and trigger
- Evaluate a-priori the π^0 suppression in $\pi^+\pi^0$ kinematic region
- Use $\pi^0 \rightarrow \gamma \gamma$ as normalization channel
- Expected background: 10^{+22}_{-8} events
- Observed: 12 events

 10^{-9} 10^{-7} 10^{-7} 10^{-7} 25-40 GeV/c 10^{-9} 10^{-

Paper in preparation

Preliminary result: BR($\pi^0 \rightarrow \gamma\gamma$) < 4.4 · 10⁻⁹ @ 90% CL

A factor 60 better wrt to previous measurements

$K^{+} \rightarrow \pi^{+} X$, X invisible

- Search for feebly interacting particles in several models
 - Dark scalar mixing with Higgs boson
 - Scalars, like Alps, QCD axion, axiflavon
- Use the same selection, normalization and background evaluation of $\pi v v$ analysis
- Generate signal with two body decay for 200 mass hypotheses to compute acceptance
- Shape analysis on m²_{miss}
- Fully frequentist approach, profiled likelihood test statistic
- Background parameterized with polynomial functions from $\pi\nu\nu$ analysis
- Signal shape: Gaussian, number of expected signal events obtained as in πνν analysis.

$K^+ \rightarrow \pi^+ X$, X invisible - Results

Paper in preparation

Assuming X decays to a visible SM particle, detected by NA62

Evaluate the BR upper limit as a function of m_X

10 times better than E949 for $m_X \in [160, 260]$

Conclusions

- A preliminary result from the analysis of the NA62 2017 data has been presented
 - 2 event found with an expected background of 1.5
 - The combination of 2016 and 2017 data gives an upper limit for the branching ratio of $1.85^{\ast}10^{-10}$
 - The two sides 68% band is 0.47^{+0.72}-0.47^{*10-10}
- The analysis of 2018 data is progressing
 - Improvements have been studied using the 2017 data
- The experimental setup is being updated for the next data taking (2012-2024)
- 2017 data have been used to search for exotic processes
 - 60 times improvement in the limit for $\pi^0 \rightarrow$ invisible
 - Improved limits on $K^{+} \rightarrow \pi^{+} X$, X invisible

Artist's view of the past installation activity...

... and of the current analysis work...

Thank you!

Beam dump mode

Standard K+ mode

Dumping the beam ahead of the detector will allow to produce B, D and K mesons decaying promptly to exotics mediators and SM particles

Exotic particles could be produced also in the dump

Exotics searches extended up to m ~ 1.7 GeV

 3×10^{16} POT has been collected in dump mode in 2017-2018. Analysis is ongoing to study the backgrounds

Runs in dump mode are foreseen during run 3 for a total of $O(10^{18})$ POT

An additional veto counter ahead of the decay volume will improve the background rejection, mainly on not-closed channels

Dark scalar

 $S \rightarrow \mu^+ \mu^-$ ($\mu S + \lambda S^2$) $H^+ H$

 $\mu = \sin \theta$ $\lambda = 0$

Search for two opposite sign charged tracks in the NA62 fiducial volume

- Including trigger/acceptance/selection efficiencies
- Assume zero background

Dark photon

$$A' \rightarrow e^+e^-, A' \rightarrow \mu^+\mu^-$$

Search for two opposite sign charged tracks in the NA62 fiducial volume

Possible improvement on current limits

Here only p-Be target considered

Including direct QCD production of A' and A' production in the dump, the sensitivity will be higher

- Including trigger/acceptance/selection efficiencies
- Assume zero background

Heavy neutral leptons

$$D/D_s \rightarrow \ell^+ \nu_H, \nu_H \rightarrow \pi e, \nu_H \rightarrow \pi \mu$$

Also the τ coupling can be probed

- Including trigger/acceptance/selection efficiencies
- Assume zero background

Axion-like particles (ALPs)

Primakov production

JHEP 1602 (2016) 018

Production via elastic scattering of beam protons on the dump

Coupling to photons is the main one

Search for decay $A \rightarrow \gamma\gamma$ Signature: 2 photons in the LKr calorimeter

- Including trigger/acceptance/selection efficiencies
- Assume zero background