

Status of MEG II and Mu3e at PSI

Toshiyuki Iwamoto ICEPP, the University of Tokyo 8 June 2020

Conference on Flavour Physics and CP violation (FPCP) 2020

Introduction

- Charged Lepton Flavor Violation (CLFV)
 - FV happens in quarks (CKM matrix) and neutral lepton (neutrino oscillation)
 - Why has charged lepton flavor violation never been observed yet?
- μ→eγ
 - Long search history since the muon has been discovered.
 - In Standard model + neutrino oscillation, CLFV can occur, but tiny,

$$Br(\mu \rightarrow e\gamma) \sim 10^{-54}$$

 An observation of CLFV is evidence of new physics.

Standard Model of Elementary Particles

From Wikipedia

Charged Lepton Flavor Violation

Why is CLFV interesting?

- CLFV processes can be enhanced by new physics through new particles in loop
- CLFV appears naturally in many NP theories such as SUSY-GUT, SUSYseesaw etc.
- The experimental sensitivity already reaches the theory prediction region, and there is a real chance for discovery!

CLFV modes

- $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e$, $\mu N \rightarrow eN$, $\tau \rightarrow 3\mu$, $\tau \rightarrow \mu\gamma$, ...
- After discovery, correlations among other results will be necessary to determine the underlying new physics
- These modes are complementary
- Strong correlation with g-2

theory :Dominik Stoeckinger exp : Esra Barlas Yucel

SUSY-Seesaw

S. Antusch et al, JHEP 0611:090(2006)

CLFV muon and tau searches

	Upper limit	Experiment (year)	Prospect	Experiment
μ→eγ	4.2 x 10 ⁻¹³	MEG (2016)	6 x 10 ⁻¹⁴	MEG II
μ→3е	1.0 x 10 ⁻¹²	SINDRUM (1988)	~ 10 ⁻¹⁵ - 10 ⁻¹⁶	Mu3e phase I - II
μ-e conversion	7 x 10 ⁻¹³	SINDRUM II (2006)	~10-17	DeeMe, COMET, Mu2e
τ→μγ	4.4 x 10 ⁻⁸	BaBar (2010)	10 -9 - 10 -10	Belle II
τ → 3μ	2.1 x 10 ⁻⁸	Belle (2010)	10 ⁻⁹ - 10 ⁻¹⁰	Belle II

If electromagnetic transitions

- Dipole dominant (SUSY etc.)
- Br(μ →e γ) : Br(μ →3e) : R(μ -Al→e-Al) = 1 : 1/390 : 1/170

If tree terms

μ→3e, μ-N→e-N are strongly enhanced

cLFV experiments in the world

Coincidence measurement: DC beam needed to minimize backgrounds from accidental coincidences

BKG \propto (Rate)²

Production Solenoid

Transport Solenoid

Production Target

Transport Solenoid

Tracker

Tracker

Stopping Target

Single e- measurement: pulsed beam needed Many pion-induced backgrounds after proton pulse wait it out with 26 ns lifetime

PSI DC muon beam

- Paul Scherrer Institute in Switzerland
 - 590 MeV 2.4mA proton ring cyclotron
 - Only one accelerator in the world to produce DC muon beam > $10^8 \mu/s$
- 50 MHz rf time structure << μ lifetime ~2μs Neutron spallation No time structure in muon decay rate Low momentum Target E ~ 29 MeV/c Proton accelerator πE5 area MEG II, Mu3e Target M **UCN** Proton therapy n2EDM

MEG II experiment

μ→eγ signal and background

Signal

Background

Accidental

Radiative Muon Decay

 $E_{\gamma}, E_{e} \simeq 52.8 MeV$ $\Theta_{e\gamma}=180^{\circ}, T_{\gamma}=T_{e}$

Michel e+ + random γ from RMD/Annihilation in flight (AIF)

e+-γ timing coincident

$$N_{acc} \propto (R_{\mu})^2 \times (\Delta E_{\gamma})^2 \times \Delta E_e \times (\Delta \Theta_{e\gamma})^2 \times \Delta t_{e\gamma} \times T$$

- Lower instantaneous muon beam rate (DC muon beam)
- Better detector resolutions

Example of event distribution MEG analysis

- Used five observables $E_{\gamma}, E_{e}, t_{e\gamma}, \theta_{e\gamma}, \phi_{e\gamma}$
- Maximum likelihood analysis
 - Accidental PDF (dominant)
 - Radiative Muon Decay PDF
 - Signal PDF
 - · Sum of all PDFs

- 250 200 150 100 50 -40 -20 0 20 40 θ_{e-γ} (mrad)
- 250 200 250 200 150 100 50 -60 -40 -20 0 20 40 60 φ (mrad)
- $N_{BMD} = 663 \pm 59$
 - Signal PDF enhanced

 $N_{ACC} = 7684 \pm 103$

- Full dataset : 7.5x10¹⁴ μ⁺ stopped on the target
- · Br(μ+→e+γ) < 4.2×10⁻¹³ @ 90% C.L.

$$N_{acc} \propto (R_{\mu})^2 \times (\Delta E_{\gamma})^2 \times \Delta E_e \times (\Delta \Theta_{e\gamma})^2 \times \Delta t_{e\gamma} \times T$$

- Lower instantaneous muon beam rate (DC muon beam)
- Better detector resolutions

MEG II Experiment

900 I Liquid Xenon y Detector

Better uniformity w/ VUV-sensitive 12x12mm² 4092 SiPM + 668 PMTs

Downstream

Radiative Decay
Counter

Further reduction of radiative BG

Positron

(e⁺)

x2 resolution everywhere

COBRA SC Magnet Upstream 7x10⁷/s Gamma-ray (y Muon (µ†) (x2.3 higher rate) **Pixelated Positron** Timing Counter 30ps resolution w/

Cylindrical Drift Single volume
Chamber small stereo cells
more hits

multiple hits

MEG II Status

Sensitivity

Resolution	MEG	MEG II
E _{e+} (keV)	380	130
θ_{e+} (mrad)	9.4	5.3
φ _{e+} (mrad)	8.7	3.7
z _{e+} /y _{e+} (mm) core	2.4/1.2	1.6/0.7
$E_{Y}(\%)$ (w>2cm/<2cm)	1.7/2.4	1.0/1.1
$u_{\gamma}, v_{\gamma}, w_{\gamma} (mm)$	5/5/6	2.6/2.2/5
t _{ey} (ps)	122	84
Efficiency (%)		
Trigger	99	99
γ	63	69
e+ (tracking × matching)	30	70

- Data for a few months exceed the current limit, and reach 6x10-14 in three years
- Engineering run followed by physics run from 2021

Mu3e experiment

µ+→e+e+e- signal and background

Signal

Background

$$\begin{split} \Sigma p_e &= 0 \\ \Sigma E_e &= m_\mu \\ Common \ vertex \\ Coincident \end{split}$$

$$\begin{array}{c} \Sigma p_e \neq 0 \\ \Sigma E_e \neq m_\mu \\ \text{Common vertex} \\ \text{Coincident} \end{array}$$

$$\begin{array}{c} \Sigma p_e \neq 0 \\ \Sigma E_e \neq m_\mu \\ \text{No common vertex} \\ \text{Not coincident} \end{array}$$

Mu3e

Mu3e current status

Being produced by Cryogenic Ltd. Homogeneous magnetic field Available this year

Tile detector 70 ps resolution Superconducting solenoid Magnet w/ single hit Fibre hodoscope Homogeneous field ~ 500 ps resolution **1T** w/ multi hits thickness: $< 0.3\% X_0$ MIDAS DAQ and Slow Run, history, alarms, HV Muon Beam and target Mupix detector Full available beam intensity Tracking, integrate sensor and O(108)readout in the same device: 50 um thick

Prototype test successfully done Fullfils Mu3e requirements (time resolution < 500 ps)

SiPM column array

Prototype (MuPix 8) test successfully done Fullfils Mu3e requirements Last prototype (MuPix 10) will be tested soon

Control

etc.

1 layer: $\sim 0.1\% X_0$

MuPix 8 beam telescope

Prototype test successfully done Fullfils Mu3e requirements (time resolution < 100 ps) Test beam: 45 ps

Mu3e Sensitivity

- Data for a month exceed the current limit by a factor of 10, and reach < 1×10-14 in 200 days
- Engineering run followed by physics run from 2021/2022

PSI beam time

- MEG II and Mu3e both request beam time in 2020 to πE5 beam line.
 Beam time is provisionally assigned by PSI review committee.
- The schedule is fully delayed by COVID-19. We will try to start the experiment in September.

Conflict at π E5 in PSI?

- MEG II and Mu3e will share πE5 beam line in PSI
- MEG II detector can be there even in Mu3e beam time thanks to the compact muon beam line for Mu3e (only upstream side)

CLFV prospects with DC muon beam

- High intensity Muon Beamline (HiMB project)
 - Upgrade plan at PSI
 - Time schedule : O(2025)
 - New 20mm effective length 5° slanted target
 - $1.3x10^{11} \mu$ +/s
 - Capture solenoid (0.35T) at d = 250mm
 - $3.4x10^{10}\mu/s$
 - Solenoidal beam line can transmit (first version of beam optics)
 - $1.3x10^{10}\mu/s$
- Feasibility test of slant target at target E performed in 2019
 - Successful
- Many applications
 - Mu3e phase II (MEG III?)
 - · µSR
 - Muonium study

Mu3e phase II

Sensitivity ~ 10⁻¹⁶

Increase muon stopping rate to $2 \cdot 10^9 \,\mu/s$ Additional recurl stations increase acceptance for recurler Smaller beam profile \Rightarrow smaller target radius

Next generation of µ→eγ searches: photon

Calorimeter

- high efficiency
- good resolution

Requirements:

- high light yield
- fast response

Sensitivity trend vs beam intensity

blue = pair conversion design
black = calorimeter design
red = calorimeter design with

red = calorimeter design with x2 resolution

Photon conversion

- low efficiency (%)
- extreme resolution
- photon direction

Requirements:

optimization of converter thickness
 (efficiency vs pair energy and angle resolution)

CLFV Prospects

 CLFV is also discussed in the 2020 update of European strategy for Particle Physics

Searches for Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams

Summary

- Experiments to search for charged lepton flavor violation are sensitive to new physics beyond the SM such as SUSY-GUT, SUSY-seesaw etc.
- Global efforts are dedicated to this field with different methods to pin down the physics behind.
- World most intense DC muon beam is available at PSI in Switzerland, and two experiments (MEG II and Mu3e) will be started rather soon. So, stay tuned.
- PSI has an upgrade plan for the intense muon beam line (HiMB). New ideas for the next generation of these experiments are welcome.

HIPA operation in 2018-2020

HIPA operation

Betrieb Protonen-Anlagen 2018-2020

26

MEG II positron spectrometer

Cylindrical Drift Chamber

- Tracking 52.8MeV e+ to reconstruct vertex, angle, and momentum
- Single volume wire drift chamber with 1280 anode wires with less material
- Higher granularity, increased number of hits per track → better angle/momentum resolution
- High transparency towards TC
 → Higher positron detection efficiency

Pixelated Timing Counter

- Time measurement of 52.8MeV e+
- 15 scintillator bars → 256 scintillator plates
 - multi-counter hits → better timing resolution down to ~30ps

27

Cylindrical Drift Chamber

- Tracking 52.8MeV e+ to reconstruct vertex, angle, and momentum
- Single volume wire drift chamber with 1280 anode wires
- Higher granularity, increased number of hits per track

MEG DCH	MEG II CDCH
16 modules	single volume
288 drift cells	1280 drift cells
40-80cm	2m long, stereo angle
He:C ₂ H ₆ =50:50	He:iC ₄ H ₁₀ =85:15

MEG II timing counter

Time measurement of 52.8MeV e+

MEG TC	MEG II TC
15 scintillating bars x 2	256 scintillator plates x 2
4x4x80 cm ³	12x(4or5)x0.5 cm ³
Readout by PMTs	Readout by SiPM
Single bar hit	Multiple counter hits

MEG II liquid xenon γ detector

- Energy, position, time measurement of 52.8MeV γ from μ→eγ decay
- Inner 216 PMTs → 4092 MPPCs (VUV-sensitive large area MPPCs)
- Better granularity, better uniformity→Better energy, position resolution

MEG II liquid xenon γ detector

of photons collected by PMTs as a function of depth

 Energy, position, time measurement of 52.8MeV γ from μ→eγ decay

MEG LXe	MEG II LXe
900L LXe	900L LXe

216 2"PMTs (γ entrance) 4092 12x12mm² MPPCs

630 PMTs (other faces) 668 PMTs

- Non uniform response for shallow events
- Replace inner PMTs with MPPCs
- Better granularity, better uniformity
 →Better energy, position resolution

Radiative Decay Counter

- New device for MEG II
 - To tag high energy γ background from radiative muon decay by detecting low momentum e+
- Downstream detector ready, upstream detector under development
 - μ+ beam goes through US RDC

LYSO 2×2×2 cm³+SiPM for e+ energy

Plastic Scinti.+SiPM for e+ timing

Readout Electronics

- Waveform data crucial for high rate environment
- Number of channels increased
 - For finer granularity
 - More compact boards necessary
- WaveDREAM developed by PSI
 - Waveform digitizer(DRS4), simple trigger, amplifier and bias voltage supply (~200V) are integrated in a board, suitable for SiPM
- Online trigger important to manage high event rate and background suppression.
 - FPGA based trigger system prepared

Mu3e pixel tracker

- Central tracker: Four layers
- Re-curl tracker: Two layers
- Minimum material budget:
 Multiple scattering dominates
- $\sigma_p < 0.5 \text{MeV/c}$

High Voltage - Monolithic Active Pixel Sensor (HV-MAPS)

- Ultra-lightweight mechanics
 - 50µm Silicon sensor
 - 25µm Kapton flexprint with Al traces
 - 25μm Kapton support frame
- Time resolution < 20ns
- Active area chip: 20x20mm²
- Under development

Mu3e timing detectors: Fibers and tiles

- After recurl pixel layers
- Scintillating tiles: 6.5x6.5x5.0mm³
- SiPMs

35

Mu3e status

Magnet:

Delivery originally planned in 2016, but cancelled. New date in 2019

Pixel tracker:

MuPix8, first full size sensor(1x2cm²) has arrived last month

Scintillating Fibers:

Prototype of Round (Kuraray SCSF-81M), squared (Saint-Gobain BC418) are tested

Time resolution ~ 600 ps

Scintillating Tile Detector:
Promising results from 4x4 array
Time resolution ~ 70 ps

- Engineering run in 2019
- Sensitivity $2x10^{-15}$ in Mu3e Phase I $10^8 \, \mu^+/s$

Internal conversion background

Allowed radiative decay with internal conversion:

$$\mu^{+} \rightarrow e^{+}e^{-}e^{+}\nu\overline{\nu}$$

Only distinguishing feature:
 Missing momentum carried by neutrino

Expected sensitivity

Photon conversion approach

Photon conversion vs calorimetric approach

A few 10⁻¹⁵ level seems to be within reach for 3 years running at 10⁸ muon/s with calorimetry or 10⁹ muons/s with photon conversion