Status of $b \rightarrow s \ell \ell$ and $b \rightarrow s \gamma$ fits

Sébastien Descotes-Genon

IJCLab CNRS & Université Paris-Saclay, Orsay, France Laboratoire de Physique des 2 Infinis Irène Joliot-Curie

http://www.ijclab.in2p3.fr

FPCP 2020, 8/6/20

Laboratoire de Physique des 2 Infinis

S. Descotes-Genon (IJCLab)

 $b
ightarrow s\ell\ell$ and $b
ightarrow s\gamma$ fits

$b ightarrow s\,\mu^+\mu^-$ anomalies

D. Wang's talk this morning

Several LHCb measurements deviate from Standard model (SM) predictions by $2-3\sigma$:

• Branching ratios of $B \to K\mu^+\mu^-$, $B \to K^*\mu^+\mu^-$, and $B_s \to \phi\mu^+\mu^-$.

LHCb 1403.8044, 1506.08777, 1606.04731

• Angular observable P'_5 in $B \to K^* \mu^+ \mu^-$ [new, 4.7 fb⁻¹]

LHCb 2003.04831, ATLAS, CMS, Belle

S. Descotes-Genon (IJCLab)

 $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$ fits

LFU violation in $b \rightarrow s \, \ell^+ \ell^-$ decays

• Measurements of lepton flavour universality (LFU) ratios $R_{K}^{[1,6]}$, $R_{K^*}^{[0.045,1.1]}$, $R_{K^*}^{[1.1,6]}$ show deviations from SM by about 2.5 σ each.

M. Mulder's talk this morning

$$\mathcal{H}(b
ightarrow s \gamma^{(*)}) \propto G_{F} V_{ts}^{*} V_{tb} \sum \mathcal{C}_{i} rac{\mathcal{O}_{i}}{\mathcal{O}_{i}}$$

to separate short and long distances ($\mu_b = m_b$)

$$\mathcal{H}(b
ightarrow s \gamma^{(*)}) \propto G_{F} V_{ts}^{*} V_{tb} \sum \mathcal{C}_{i} \mathcal{O}_{i}$$

to separate short and long distances ($\mu_b = m_b$)

M

to separate short and long distances ($\mu_b = m_b$)

• $\mathcal{O}_7 = \frac{e}{g^2} m_b \, \bar{s} \sigma^{\mu\nu} (1 + \gamma_5) F_{\mu\nu} \, b$ [real or soft photon]

to separate short and long distances $(\mu_b = m_b)$ $\bullet \mathcal{O}_7 = \frac{e}{g^2} m_b \bar{s} \sigma^{\mu\nu} (1 + \gamma_5) F_{\mu\nu} b$ [real or soft photon] $\bullet \mathcal{O}_9 = \frac{e^2}{g^2} \bar{s} \gamma_\mu (1 - \gamma_5) b \bar{\ell} \gamma^\mu \ell$ [$b \to s \mu \mu$ via Z/hard $\gamma \dots$] $\bullet \mathcal{O}_{10} = \frac{e^2}{g^2} \bar{s} \gamma_\mu (1 - \gamma_5) b \bar{\ell} \gamma^\mu \gamma_5 \ell$ [$b \to s \mu \mu$ via Z]

 $\mathcal{O}_{9,10,9^\prime,10^\prime}$

В

NP changes short-distance C_i or add new operators \mathcal{O}_i

- Chirally flipped ($W \rightarrow W_R$)
- (Pseudo)scalar ($W \rightarrow H^+$)
- Tensor operators ($\gamma \rightarrow T$)

 $\mathcal{O}_{7} \rightarrow \mathcal{O}_{7'} \propto \bar{\mathbf{s}} \sigma^{\mu\nu} (1 - \gamma_{5}) F_{\mu\nu} b$ $\mathcal{O}_{9}, \mathcal{O}_{10} \rightarrow \mathcal{O}_{S} \propto \bar{\mathbf{s}} (1 + \gamma_{5}) b \bar{\ell} \ell, \mathcal{O}_{P}$ $\mathcal{O}_{9} \rightarrow \mathcal{O}_{T} \propto \bar{\mathbf{s}} \sigma_{\mu\nu} (1 - \gamma_{5}) b \, \bar{\ell} \sigma_{\mu\nu} \ell$

Two sources of hadronic uncertainties

D. van Dyk's talk, this afternoon

$$\mathcal{A}(\mathcal{B} \to \mathcal{M}\ell\ell) = \frac{G_F \alpha}{\sqrt{2}\pi} V_{tb} V_{ts}^* [(\mathcal{A}_{\mu} + \mathcal{T}_{\mu}) \bar{u}_{\ell} \gamma^{\mu} v_{\ell} + \frac{\mathcal{B}_{\mu} \bar{u}_{\ell} \gamma^{\mu} \gamma_5 v_{\ell}]$$

Two sources of hadronic uncertainties

D. van Dyk's talk, this afternoon

$$A(B \to M\ell\ell) = \frac{G_F \alpha}{\sqrt{2\pi}} V_{tb} V_{ts}^* [(A_\mu + T_\mu) \bar{u}_\ell \gamma^\mu v_\ell + B_\mu \bar{u}_\ell \gamma^\mu \gamma_5 v_\ell]$$

Form factors (local)

• Local contributions (more terms if NP in non-SM C_i): form factors

$$\begin{aligned} \mathbf{A}_{\mu} &= -\frac{2m_{b}q^{\nu}}{q^{2}}\mathcal{C}_{7}\langle \mathbf{M}|\bar{\mathbf{s}}\sigma_{\mu\nu}\mathbf{P}_{R}b|\mathbf{B}\rangle + \mathcal{C}_{9}\langle \mathbf{M}|\bar{\mathbf{s}}\gamma_{\mu}\mathbf{P}_{L}b|\mathbf{B}\rangle \\ \mathbf{B}_{\mu} &= \mathcal{C}_{10}\langle \mathbf{M}|\bar{\mathbf{s}}\gamma_{\mu}\mathbf{P}_{L}b|\mathbf{B}\rangle \end{aligned}$$

Two sources of hadronic uncertainties

D. van Dyk's talk, this afternoon

Form factors (local)

Charm loop (non-local)

• Local contributions (more terms if NP in non-SM C_i): form factors

$$\begin{aligned} \mathbf{A}_{\mu} &= -\frac{2m_{b}q^{\nu}}{q^{2}}\mathcal{C}_{7}\langle \mathbf{M}|\bar{\mathbf{s}}\sigma_{\mu\nu}\mathbf{P}_{B}\mathbf{b}|\mathbf{B}\rangle + \mathcal{C}_{9}\langle \mathbf{M}|\bar{\mathbf{s}}\gamma_{\mu}\mathbf{P}_{L}\mathbf{b}|\mathbf{B}\rangle \\ \mathbf{B}_{\mu} &= \mathcal{C}_{10}\langle \mathbf{M}|\bar{\mathbf{s}}\gamma_{\mu}\mathbf{P}_{L}\mathbf{b}|\mathbf{B}\rangle \end{aligned}$$

Non-local contributions (charm loops): hadronic contribs.

 T_{μ} contributes like $\mathcal{O}_{7,9}$, but depends on q^2 and external states

S. Descotes-Genon (IJCLab)

 $b
ightarrow s\ell\ell$ and $b
ightarrow s\gamma$ fits

Fits

Once long dist understood, fit data to extract NP in short-dist C_i

• Fits perfomed with 2019 data by [Aebischer et al., 1903.10434, Ciuchini et al., 1903.09632,

Datta et al., 1903.10086, Kowalska et al., 1903.10932, Arbey et al., 1904.08399]

- Updated 2020 results in appendix of [Algueró, Capdevila, Crivellin, SDG, Masjuan, Matias, Novoa-Brunet, Virto, 1903.09578], also as Addendum to published version
- Two other 2020 updates available from [Biswas, Nandi, Ray, Kumar Patra, 2004.14687] and [Bhom, Chrzaszcz, Mahmoudi, Prim, Scott, White, 2006.03489]

Fits

Once long dist understood, fit data to extract NP in short-dist C_i

• Fits perfomed with 2019 data by [Aebischer et al., 1903.10434, Ciuchini et al., 1903.09632,

Datta et al., 1903.10086, Kowalska et al., 1903.10932, Arbey et al., 1904.08399]

- Updated 2020 results in appendix of [Algueró, Capdevila, Crivellin, SDG, Masjuan, Matias, Novoa-Brunet, Virto, 1903.09578], also as Addendum to published version
- Two other 2020 updates available from [Biswas, Nandi, Ray, Kumar Patra, 2004.14687] and [Bhom, Chrzaszcz, Mahmoudi, Prim, Scott, White, 2006.03489]

Frequentist analysis of [Algueró et al, 1903.09578]

- likelihood from experimental and theoretical uncertainties and correlations in Gaussian approx
- two statistical quantities of interest to assess a NP scenario/hyp
 - *p*-value of a given hypothesis:
 ²_{min} considering N_{dof} (in %)
 goodness of fit: does the hypothesis give an overall good fit ?
 and if not, can we exclude it ?
 - Pull_{SM}: χ²(C_i = 0) χ²_{min} considering N_{dof} (in σ units) metrology: how well does the hypothesis solve SM deviations ?

S. Descotes-Genon (IJCLab)

Experimental inputs

including LHCb, ATLAS, CMS, Babar and Belle data whenever available, and in particular the latest LHCb update of $B \rightarrow K^* \mu \mu$

• Some additional obs from some groups ($\Lambda_b \rightarrow \Lambda \ell \ell, \ b \rightarrow s \gamma$ obs)

• [Algueró et al] and [most groups] No inclusion of additional observables that are not directly related to $b \to s\ell\ell$ and $b \to s\gamma$

(would require extra assumption on NP model)

• [Aebischer et al] correlate theory inputs in $B_s \rightarrow \mu\mu$ with $\Delta F = 2$ observables assuming SM there and enhancing $B_s \rightarrow \mu\mu$ role

1D Scenarios for $C_{i\mu}$ (2020)

	All			LFUV		
1D Hyp.	1 σ	$Pull_{SM}$	p-value	1 σ	Pull _{SM}	p-value
$\mathcal{C}_{9\mu}^{\mathrm{NP}}$	[-1.19, -0.88]	6.3	37.5%	[-1.25, -0.61]	3.3	60.7%
$C_{9\mu}^{\rm NP} = -C_{10\mu}^{\rm NP}$	[-0.59, -0.41]	5.8	25.3%	[-0.50, -0.28]	3.7	75.3%
$\mathcal{C}_{9\mu}^{ m NP} = -\mathcal{C}_{9'\mu}$	[-1.17, -0.87]	6.2	34.0%	[-2.15, -1.05]	3.1	53.1 %

- LFUV fit: R_K , R_{K^*} , $Q_{4,5}$ $(P'_{i,\mu} P'_{i,e})$, $B_s \rightarrow \mu\mu$, $b \rightarrow s\gamma$
- All : all $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$ observables
- Pull_{SM} in σ units increased wrt [2019] by 0.6-0.7 σ for fit All
- *p*-value of SM hyp down from 11% to 1.4% (2.5 σ) for the fit "All"

2D Scenarios for $C_{i\mu}$ (2019)

2D Scenarios for $C_{i\mu}$ (2020)

 $b
ightarrow s\ell\ell$ and $b
ightarrow s\gamma$ fits

2D and 6D Scenarios for $C_{i\mu}$ (2020)

	All			LFUV		
2D Hyp.	Best fit	Pull _{SM}	p-value	Best fit	Pull _{SM}	p-value
$(\mathcal{C}^{\mathrm{NP}}_{9\mu},\mathcal{C}^{\mathrm{NP}}_{10\mu})$	(-0.98,0.19)	6.2	39.8%	(-0.31,0.44)	3.2	70.0%
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{9'\mu})$	(-1.14,0.55)	6.5	47.4%	(-1.86,1.20)	3.5	81.2%
$(\mathcal{C}_{9\mu}^{\mathrm{NP}},\mathcal{C}_{10'\mu})$	(-1.17,-0.33)	6.6	50.3 %	(-1.87,-0.59)	3.7	89.6%
$({\cal C}_{9\mu}^{ m NP'}=-{\cal C}_{9'\mu},\ {\cal C}_{10\mu}^{ m NP}={\cal C}_{10'\mu})$	(-1.10,0.28)	6.5	48.9%	(-1.69,0.29)	3.5	82.4%
$(\mathcal{C}^{\mathrm{NP}}_{9\mu}, \dot{\mathcal{C}}_{9'\mu} = -\mathcal{C}_{10'\mu})$	(-1.17,0.23)	6.6	51.1%	(-2.05,0.50)	3.8	91.9%

- Right-handed currents appear quite naturally
- $\bullet\,$ Slght decrease of the p-values, increase of the pull_{SM}
- No change in the hierarchy of scenarios compared to 2019

	$C_7^{\rm NP}$	$C_{9\mu}^{\rm NP}$	$C_{10\mu}^{\rm NP}$	C _{7'}	$C_{9'\mu}$	C _{10'µ}
Bfp	+0.00	-1.13	+0.20	+0.00	+0.49	-0.10
1σ	[-0.02, +0.02]	[-1.30, -0.96]	[+0.05, +0.37]	[-0.01, +0.02]	[+0.04, +0.95]	[-0.33, +0.14]
2 σ	[-0.03, +0.04]	[-1.46, -0.78]	[-0.09, +0.57]	[-0.03, +0.04]	[-0.39, +1.45]	[-0.55, +0.41]

- Pull_{SM} : 5.1 [2019] \rightarrow 5.8 σ [2020]
- *p*-value: 81.6% [2019] \rightarrow 46.8% [2020]

Consistency of the results over the q^2 range

 \implies Similar stability of $C_{9\mu}$ as a function of q^2 for other NP scenarios

 $b
ightarrow s\ell\ell$ and $b
ightarrow s\gamma$ fits

Other works (2019)

[Aebischer et al., 1903.10434], [Alok et al. 1903.09617] [Kowalska et al. 1903.10932] [D'amico et al. 1704.05438 updated] [Ciuchini et al. 1903.09632] with different settings, similar favoured NP scenarios

1D hyp	Algueró	Aebischer	Alok	Arbey	D'amico	Kowalska
$\mathcal{C}_{9\mu}^{\mathrm{NP}}$	5.6 σ	5.9 σ	6.2 σ	5.3σ	6.5 σ	4.7σ
$\mathcal{C}_{9\mu}^{\rm NP} = -\mathcal{C}_{10\mu}^{\rm NP}$	5.2 σ	6.6 σ	6.4 σ	4.5σ	5.9σ	4.8 σ
$\mathcal{C}_{9\mu}^{\mathrm{NP}} = -\mathcal{C}_{9'\mu}^{\mathrm{NP}}$	5.5 σ	-	6.4 σ	-	-	-

Other works (2019)

[Aebischer et al., 1903.10434], [Alok et al. 1903.09617] [Kowalska et al. 1903.10932] [D'amico et al. 1704.05438 updated] [Ciuchini et al. 1903.09632] with different settings, similar favoured NP scenarios

- NP hyps with significant pulls
- Right-handed currents interesting (due to *R_K* closer to 1)
- $C_{9\mu}^{NP} = -C_{10\mu}^{NP}$ favoured by [Aebischer et al.] as a combined effect of
 - $BR(B_s \rightarrow \mu \mu)$
 - $\Lambda_b \rightarrow \Lambda \mu \mu$ inputs
 - $\Delta m_{d,s}$ assuming no NP in $\Delta B = 2$ (not done in other fits)

S. Descotes-Genon (IJCLab)

Other works (2020)

[Biswas, Nandi, Ray, Kumar Patra, 2004.14687]

- Complex Wilson coefficients (NP weak phases)
- Include CP-asymmetries for $B \to K^* \mu \mu$, $B_s \to \phi \mu \mu$
- Favoured scenarios with real and imaginary parts in C_{9,9',10}
- Large imaginary parts are allowed, for instance $Re(C_{9\mu}^{NP}) \rightarrow -1.14 \pm 0.11, Im(C_{9\mu}^{NP}) \rightarrow -0.22 \pm 0.42$ $Re(C_{9'\mu}) \rightarrow 0.40 \pm 0.23, Im(C_{9'\mu}) \rightarrow -1.05 \pm 0.38$
- Results for CP-averaged observables close to real NP scenarios

[Bhom, Chrzaszcz, Mahmoudi, Prim, Scott, White, 2006.03489]

- Gambit framework (frequentist, correlation recomputed pt-by-pt)
- NP real contributions to C_7, C_9, C_{10} with pull_{SM}=6.0 σ
- 1σ CI: [0.002, 0.028], [-1.19, -0.85], [-0.06, 0.20]

Data 2020

 $b
ightarrow s\ell\ell$ and $b
ightarrow s\gamma$ fits

Scenarios for LFU and LFUV C_i (2019)

 R_{K} and $R_{K^{*}}$ support LFUV NP, but there could also be a LFU piece

 $C_{ie} = C_i^{U}$ $C_{i\mu} = C_i^{U} + C_{i\mu}^{V}$ (first discussed in [Algueró et al, 1809.08447])

G. Isidori's talk, this morning

Scenarios for LFU and LFUV C_i (2020)

 R_{K} and $R_{K^{*}}$ support LFUV NP, but there could also be a LFU piece

 $C_{ie} = C_i^{U}$ $C_{i\mu} = C_i^{U} + C_{i\mu}^{V}$ (first discussed in [Algueró et al, 1809.08447])

G. Isidori's talk, this morning

S. Descotes-Genon (IJCLab)

 $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$ fits

Comments on the $B \rightarrow K^* \mu \mu$ data

New data from LHCb

- uncertainty reduced by 30 50% (in particular [1.1, 2.5] [2.5, 4])
- new average value for *F_L* in the bin [2.5,4] more than 4σ below 1, helping the discussion in terms of optimised observables *P_i*

Excellent consistency

- new tensions wrt SM in $\langle P_3 \rangle_{[1.1,2.5]}, \langle P'_6 \rangle_{[6,8]}$ and $\langle P'_8 \rangle_{[1.1,2.5]}$
- enhanced tension for other obs such as P_{1,2}
- tension in first bin of P'_5 decreased, agrees more with theory

Solve earlier tensions of the fit discussed in [Algueró et al, 1902.04900]

S. Descotes-Genon (IJCLab)

 $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$ fits

Consistency of scenarios with $B ightarrow K^* \mu \mu$ data

 Increase of significance for some scenarios (up to 0.8 σ), but same hierarchies

Consistency of scenarios with ${\it B} ightarrow {\it K}^* \mu \mu$ data

- Increase of significance for some scenarios (up to 0.8 σ), but same hierarchies
- Reduction of the internal tensions of the fit
 - for *P*'₅

for some of the scenarios

Consistency of scenarios with $B ightarrow K^* \mu \mu$ data

- Increase of significance for some scenarios (up to 0.8 σ), but same hierarchies
- Reduction of the internal tensions of the fit
 - for P'_5
 - between P'_5 and R_K

for some of the scenarios

Consistency of scenarios with $B ightarrow K^* \mu \mu$ data

- Increase of significance for some scenarios (up to 0.8 σ), but same hierarchies
- Reduction of the internal tensions of the fit
 - for P'_5
 - between P'_5 and R_K

for some of the scenarios

p-value of SM decreased to 1.4%

Disentangling scenarios: more modes

Different info and systematics in angular distributions known for

- $B \to K^{*J} (\to K \pi) \ell^+ \ell^-$
- $\Lambda_b \to \Lambda(\to N\pi)\ell^+\ell^-$
- $\Lambda_b \rightarrow \Lambda(1520) (\rightarrow NK) \ell^+ \ell^-$

[Lu, Wang; Gratrex, Hopfer, Zwicky; Dey; Das, Kindra, Kumar, Mahajan]
[Böer, Feldmann, van Dyk; Detmold, Meinel; Das; Blake, Kreps]
[Amhis, SDG, Marin Benito, Novoa Brunet, Schune; Das, Das]

- Form factors poorly known
- Large recoil: factorisation, cc contributions
- Low recoil: estimate of quark-hadron duality violation

 $b
ightarrow s\ell\ell$ and $b
ightarrow s\gamma$ fits

[Detmold, Lin, Meinel, Wingate, Rendon; SDG, Khodjamirian, Virto]

Disentangling scenarios: more observables

and $B_d \to K_S \ell \ell$

[SDG, Novoa Brunet, Vos, in prep]

 $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$ fits

Conclusions

New $B \to K^* \mu \mu$ data confirm the solidity of $b \to s \ell \ell$ landscape

- Increased consistency between $B \rightarrow K^* \mu \mu$ data and the rest of the global fit, in particular between R_K and P'_5
- $\bullet\,$ Increase in the $\text{pull}_{\rm SM}$ of the favoured scenarios, no change in hierarchy of scenarios
- Significant decrease of the *p*-value of the SM
- Right-handed currents in several favoured scenarios

More from LHCb ? Belle II and CMS data ?

Better theory estimates ? NP models ?

Thanks for your attention !

Backup slides

Hadronic uncertainties: form factors

3 form factors for K, 7 form factors for K* and ϕ

• low recoil: lattice QCD

[Horgan, Liu, Meinel, Wingate; HPQCD collab]

• large recoil: Light-Cone Sum Rules (B-meson or light-meson DAs)

[Khodjamirian, Mannel, Pivovarov, Wang; Bharucha, Straub, Zwicky; Gubernari, Kokulu, van Dyk]

- correlations among the form factors needed from
 - direct determination and/or combined fit to low and large recoils
 - EFT with $m_b \rightarrow \infty + O(\alpha_s) + O(1/m_b)$

[Jäger, Camalich; Capdevila, SDG, Hofer, Matias; Straub, Altmannshoffer; Hurth, Mahmoudi]

S. Descotes-Genon (IJCLab)

 $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$ fits

Hadronic uncertainties: charm loops

- important for resonance regions (charmonia)
- SM effect contributing to $\mathcal{C}_{9\ell}$
- depends on q^2 , lepton univ.
- quark-hadron duality approx at large q² (syst of few %)

Hadronic uncertainties: charm loops

- important for resonance regions (charmonia)
- SM effect contributing to $\mathcal{C}_{9\ell}$
- depends on q^2 , lepton univ.
- quark-hadron duality approx at large q² (syst of few %)

Several approaches agree at low- q^2

LCSR estimates

[Khodjamirian, Mannel, Pivovarov, Wang; Gubenari, Van Dyk]

• order of magnitude estimate for the fits (LCSR or Λ/m_b)

[Crivellin, Capdevila, SDG, Hofer, Matias; Straub, Altmannshoffer; Hurth, Mahmoudi]

• fit of sum of resonances to the data

[Blake, Egede, Owen, Pomery, Petridis]

Hadronic uncertainties: charm loops

- important for resonance regions (charmonia)
- SM effect contributing to $\mathcal{C}_{9\ell}$
- depends on q^2 , lepton univ.
- quark-hadron duality approx at large q² (syst of few %)

LCSR estimates

[Khodjamirian, Mannel, Pivovarov, Wang; Gubenari, Van Dyk]

[Blake, Egede, Owen, Pomery, Petridis]

• order of magnitude estimate for the fits (LCSR or Λ/m_b)

[Crivellin, Capdevila, SDG, Hofer, Matias; Straub, Altmannshoffer; Hurth, Mahmoudi]

- fit of sum of resonances to the data
- fit of q²-parametrisation to the data

[Ciuchini, Fedele, Franco, Mishima, Paul, Silvestrini, Valli; Capdevila, SDG, Hofer, Matias]

• dispersive representation + $J/\psi,\psi(2S)$ data [Bobeth, Chrzaszcz, van Dyk, Virto]

S. Descotes-Genon (IJCLab)

 $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$ fits

FPCP 8/6/20 24

Pending questions on $c\bar{c}$ contributions

• Estimate of soft-gluon *cc* contribution from Light-Cone Sum Rules

- Several *cc* contributions, with hard and soft gluons (hard to estimate)
- Soft-gluon correction from LCSR smaller than thought ? [Gubernari, Van Dyk]
- Impact on contribution to be worked out (not used at face value in fits)

• Narrow-width approx for form factors

- Not problem for K or ϕ , but for K^* ?
- Lattice QCD : other collaborations ?
- K*-meson LCSR: not able to catch the effect (need to use Kπ DAs)
- *B*-meson LCSR: universal 10% effect, increasing SM discrepancy

[Khodjamirian, SDG, Virto]

(Aebischer et al., 1903.10434)

- Obs: same + $\Lambda_b \rightarrow \Lambda \mu \mu$ [BR, A_{FB}]
- Stat approach: Frequentist, flavio code
- Form factors: global fit to K*-meson LCSR + lattice
- LD charm: q^2 -polynomial with 10% from amplitude

• Higher pulls: 6.3σ and 6.0σ (p-value: 22% for $b \rightarrow s\mu\mu$ obs only) • 1D hyps: preference for $C_{9\mu}^{NP} = -C_{10\mu}^{NP}$ with tensions among obs.

S. Descotes-Genon (IJCLab)

 $b
ightarrow s\ell\ell$ and $b
ightarrow s\gamma$ fits

(Arbey et al., 1904.08399)

- Obs: similar to Algueró et al
- Stat approach: Frequentist, SuperIso code
- Form factors: global fit to K*-meson LCSR + lattice
- LD charm: q²-polynomial with 10% size of QCD fact

- decreased tension between $R_{K(*)}$ and others concerning $C_{10\mu}^{\rm NP}$
- 1D hyps: preference for $C_{9\mu}^{NP}$
- No need for NP in electrons (in agreement with other groups)

 $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$ fits

Scenarios for LFU and LFUV C_i (2020)

Scenario		Best-fit point	1 σ	2 σ	$Pull_{SM}$	p-value
	$C_{9\mu}^{V}$	-0.54	[-1.06, -0.06]	[-1.68, +0.39]		
Sc. 5	$C_{10\mu}^{V}$	+0.58	[+0.13, +0.97]	[-0.48, +1.33]	6.0	39.4 %
	$\mathcal{C}_9^U = \mathcal{C}_{10}^U$	-0.43	[-0.85, +0.05]	[-1.23, +0.67]		
Sc. 6	$C_{9\mu}^{V} = -C_{10\mu}^{V}$	-0.56	[-0.65, -0.47]	[-0.75, -0.38]	62	414%
00.0	$\mathcal{C}_9^U = \mathcal{C}_{10}^U$	-0.41	[-0.53, -0.29]	[-0.64, -0.16]	0.2	
0 7	$C_{9\mu}^{V}$	-0.84	[-1.15, -0.54]	[-1.48, -0.26]		00.50
Sc. 7	C_9^U	-0.25	[-0.59, +0.10]	[-0.92, +0.47]	6.0	36.5%
Sc. 8	$C_{9\mu}^{V} = -C_{10\mu}^{V}$	-0.34	[-0.44, -0.25]	[-0.54, -0.16]	6.5	48.4%
00.0	C_9^U	-0.80	[-0.98, -0.60]	[-1.16, -0.39]	0.0	40.4 /0
	$C_{9\mu}^{V} = -C_{10\mu}^{V}$	-0.66	[-0.79, -0.52]	[-0.93, -0.40]		00.4.0/
Sc. 9	C_{10}^U	-0.40	[-0.63, -0.17]	[-0.86, +0.07]	5.7	28.4 %
Sc 10	$C_{9\mu}^{V}$	-1.03	[-1.18, -0.87]	[-1.33, -0.71]	62	41.5%
00.10	C_{10}^{U}	+0.28	[+0.12, +0.45]	[-0.04, +0.62]	0.2	41.0 /0
0. 11	$C_{9\mu}^{V}$	-1.11	[-1.26, -0.95]	[-1.40, -0.78]	0.0	40.00/
SC. 11	$\mathcal{C}_{10'}^{U'}$	-0.29	[-0.44, -0.15]	[-0.58, -0.01]	6.3	43.9%
Sc 12	$\mathcal{C}_{9',ii}^{V}$	-0.06	[-0.21, +0.10]	[-0.37, +0.26]	21	2.2%
00.12	$\mathcal{C}_{10}^{U^{\prime\prime}}$	+0.44	[+0.26, +0.62]	[+0.09, +0.81]	2.1	2.2 /0
	$C_{9\mu}^{V}$	-1.16	[-1.31, -1.00]	[-1.46, -0.83]		
	$\mathcal{C}_{9'}^{V''}$	+0.56	[+0.27, +0.83]	[-0.02, +1.10]		
Sc. 13	\mathcal{C}_{10}^{U}	+0.28	[+0.08, +0.49]	[-0.11, +0.70]	6.2	49.2 %
	$\mathcal{C}_{10'}^{U'}$	+0.01	[-0.19, +0.22]	[-0.40, +0.42]		

Hints for LFU violation in $b \rightarrow c \ell \nu$ decays

Measurements of LFU ratios R_D and R_{D^*} by BaBar, Belle, and LHCb show combined deviation from SM by about 3σ .

BaBar, 1205.5442, 1303.0571, LHCb, 1506.08614, 1708.08856

Belle, 1507.03233, 1607.07923, 1612.00529, 1904.08794

HFLAV, hflav.web.cern.ch

Connect $b \to s\ell\ell$ and $b \to c\ell\nu$ within SMEFT ($\Lambda_{NP} \gg m_{t,W,Z}$) $\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \mathcal{L}_{d>4}$ with higher-dim ops involving only SM fields

[Grzadkowski, Iskrzynski, Misiak, Rosiek ; Alonso, Grinstein, Camalich]

Connect $b \to s\ell\ell$ and $b \to c\ell\nu$ within SMEFT ($\Lambda_{NP} \gg m_{t,W,Z}$) $\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \mathcal{L}_{d>4}$ with higher-dim ops involving only SM fields

[Grzadkowski, Iskrzynski, Misiak, Rosiek ; Alonso, Grinstein, Camalich]

Two ops. with left-handed doublets

$$\mathcal{O}_{ijkl}^{(1)} = [\bar{Q}_i \gamma_\mu Q_j] [\bar{L}_k \gamma^\mu L_l] \qquad \mathcal{O}_{ijkl}^{(3)} = [\bar{Q}_i \gamma_\mu \vec{\sigma} Q_j] [\bar{L}_k \gamma^\mu \vec{\sigma} L_l]$$

Connect $b \rightarrow s\ell\ell$ and $b \rightarrow c\ell\nu$ within SMEFT ($\Lambda_{NP} \gg m_{t,W,Z}$) $\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \mathcal{L}_{d>4}$ with higher-dim ops involving only SM fields

[Grzadkowski, Iskrzynski, Misiak, Rosiek ; Alonso, Grinstein, Camalich]

Two ops. with left-handed doublets

$$\mathcal{O}_{ijkl}^{(1)} = [\bar{Q}_i \gamma_\mu Q_j] [\bar{L}_k \gamma^\mu L_l] \qquad \mathcal{O}_{ijkl}^{(3)} = [\bar{Q}_i \gamma_\mu \vec{\sigma} Q_j] [\bar{L}_k \gamma^\mu \vec{\sigma} L_l]$$

• FCCC part of $\mathcal{O}^{(3)}_{2333}$ describe $R_{D^{(*)}}$ (rescale G_F for $b \to c \tau \nu$)

Connect $b \rightarrow s\ell\ell$ and $b \rightarrow c\ell\nu$ within SMEFT ($\Lambda_{NP} \gg m_{t.W,Z}$) $\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \mathcal{L}_{d>4}$ with higher-dim ops involving only SM fields

[Grzadkowski, Iskrzynski, Misiak, Rosiek ; Alonso, Grinstein, Camalich]

Two ops. with left-handed doublets

$$\mathcal{O}_{ijkl}^{(1)} = [\bar{Q}_i \gamma_\mu Q_j] [\bar{L}_k \gamma^\mu L_l] \qquad \mathcal{O}_{ijkl}^{(3)} = [\bar{Q}_i \gamma_\mu \vec{\sigma} Q_j] [\bar{L}_k \gamma^\mu \vec{\sigma} L_l]$$

- FCCC part of $\mathcal{O}_{2333}^{(3)}$ describe $R_{D^{(*)}}$ (rescale G_F for $b \to c\tau\nu$) FCNC part of $\mathcal{O}_{2333}^{(1,3)}$ with $C_{2333}^{(1)} = C_{2333}^{(3)}$ [Capdevila et al, 1712.01919]
- - Large NP contribution $b \rightarrow s\tau\tau$ through $C_{q_{\tau}}^{V} = -C_{10\tau}^{V}$
 - Avoids bounds from $B \to K^{(*)} \nu \nu$. Z decays, direct production in $\tau \tau$

Connect $b \to s\ell\ell$ and $b \to c\ell\nu$ within SMEFT ($\Lambda_{NP} \gg m_{t,W,Z}$) $\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \mathcal{L}_{d>4}$ with higher-dim ops involving only SM fields

[Grzadkowski, Iskrzynski, Misiak, Rosiek ; Alonso, Grinstein, Camalich]

Two ops. with left-handed doublets

$$\mathcal{O}_{ijkl}^{(1)} = [\bar{Q}_i \gamma_\mu Q_j] [\bar{L}_k \gamma^\mu L_l] \qquad \mathcal{O}_{ijkl}^{(3)} = [\bar{Q}_i \gamma_\mu \vec{\sigma} Q_j] [\bar{L}_k \gamma^\mu \vec{\sigma} L_l]$$

- FCCC part of $\mathcal{O}_{2333}^{(3)}$ describe $R_{D^{(*)}}$ (rescale G_F for $b \to c\tau\nu$)
- FCNC part of $\mathcal{O}_{2333}^{(1,3)}$ with $C_{2333}^{(1)} = C_{2333}^{(3)}$ [Capdevila et al, 1712.01919]
 - Large NP contribution $b \rightarrow s \tau \tau$ through $C_{9\tau}^{V} = -C_{10\tau}^{V}$
 - Avoids bounds from $B \rightarrow K^{(*)} \nu \nu$, Z decays, direct production in $\tau \tau$
 - Through radiative effects, (small) NP contribution to C_9^U

 $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$ fits

Connection with charged currents: B anomalies

Scenario 8:

- $C_{9\mu}^{V} = -C_{10\mu}^{V}$ from small \mathcal{O}_{2322} [$b \rightarrow s\mu\mu$]
- C_9^U from rad corr to large \mathcal{O}_{2333} [$b \rightarrow c \tau \nu, b \rightarrow s \mu \mu$]
- No contrib from *O*₃₃₃₃ [EWPO, direct LHC searches in τ⁺τ⁻]

Generic flavour struct, NP scale Λ

$$\begin{array}{lll} \mathcal{C}_{9}^{\mathrm{U}} &\approx & 7.5 \left(1 - \sqrt{\frac{R_{D^{(*)}}}{R_{D^{(*)};\mathrm{SM}}}}\right) \\ & \times \left(1 + \frac{\log(\Lambda^2/(1\mathrm{TeV}^2))}{10.5}\right) \end{array}$$

Connection with charged currents: **B** anomalies

Scenario 8:

- $C_{9\mu}^{V} = -C_{10\mu}^{V}$ from small \mathcal{O}_{2322} [$b \rightarrow s\mu\mu$]
- C_9^U from rad corr to large \mathcal{O}_{2333} [$b \rightarrow c \tau \nu, b \rightarrow s \mu \mu$]
- No contrib from \mathcal{O}_{3333} [EWPO, direct LHC searches in $\tau^+\tau^-$]

Generic flavour struct, NP scale Λ

$$\begin{array}{lll} \mathcal{C}_9^{\rm U} &\approx & 7.5 \left(1-\sqrt{\frac{R_{D^{(*)}}}{R_{D^{(*)};\rm SM}}}\right) \\ & \times \left(1+\frac{\log(\Lambda^2/(1{\rm TeV}^2))}{10.5}\right) \end{array}$$

- Agreement with (R_D, R_{D^*}) for $\Lambda = 1 10$ TeV
- Scenario 8 has Pull_{SM} of 7.4 σ once R_{D^*} included
- Huge enhancement of $b \rightarrow s \tau \tau$ modes $O(10^{-4})$ [Capdevila et al, 1712.01919]

S. Descotes-Genon (IJCLab)

 $b
ightarrow s\ell\ell$ and $b
ightarrow s\gamma$ fits

Connection with charged currents: b ightarrow s au au

Hints of NP in neutral currents with neutrinos

- SM neutrinos and left-handed charged leptons in same doublets
- Connection between FCNC with charged and neutral leptons

Hints of NP in neutral currents with neutrinos

- SM neutrinos and left-handed charged leptons in same doublets
- Connection between FCNC with charged and neutral leptons
- $B
 ightarrow h_s
 u ar{
 u}$
 - SM: $\mathcal{B}(B \to K^{(*)} \nu \bar{\nu})_{SM} = (9.6 \pm 0.9) \times 10^{-6}$ and $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})_{SM} = (5.6 \pm 0.5) \times 10^{-6}$
 - Belle: 90%CL bounds of a few 10⁻⁵
 - Belle II : projected accuracy of 10% at SM value with 50 ab⁻¹

Hints of NP in neutral currents with neutrinos

- SM neutrinos and left-handed charged leptons in same doublets
- Connection between FCNC with charged and neutral leptons
- $B
 ightarrow h_s
 u ar{
 u}$

• SM:
$$\mathcal{B}(B \to K^{(*)} \nu \bar{\nu})_{SM} = (9.6 \pm 0.9) \times 10^{-6}$$

and $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})_{SM} = (5.6 \pm 0.5) \times 10^{-6}$

- Belle: 90%CL bounds of a few 10⁻⁵
- Belle II : projected accuracy of 10% at SM value with 50 ab⁻¹

$K \to \pi \nu \bar{\nu}$

• SM:
$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (9.31 \pm 0.76) \times 10^{-11}$$

and $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})_{SM} = (3.74 \pm 0.72) \times 10^{-11}$

- NA62: $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})_{exp} < 2.24 \times 10^{-10}$ (aims *O*(10%) SM acc)
- KOTO: $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})_{exp} = 2.1^{+2.0(+4.1)}_{-1.1(-1.7)} \times 10^{-9}$ (!)
- [Grossman,Nir] bound $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) \leq 4.3 \mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ not OK possible escape: light flavour-violating NP [Ziegler, Zupan, Zwicky 2005.00451]

S. Descotes-Genon (IJCLab)

Connection with neutrino currents: SMEFT

[SDG, Fajfer, Kamenik, Novoa-Brunet, 2005.03734]

EFT including right-handed quarks (not leptons)

$$\begin{split} \mathcal{L}_{\text{eff.}} &= \mathcal{L}_{\text{SM}} - \frac{1}{v^2} \lambda^q_{ij} \lambda^\ell_{\alpha\beta} \left[C_T \left(\bar{Q}^i_L \gamma_\mu \sigma^a Q^j_L \right) \left(\bar{L}^\alpha_L \gamma^\mu \sigma^a L^\beta_L \right) \right. \\ &+ C_S \left(\bar{Q}^j_L \gamma_\mu Q^j_L \right) \left(\bar{L}^\alpha_L \gamma^\mu L^\beta_L \right) + C'_{RL} \left(\bar{d}^j_R \gamma_\mu d^j_R \right) \left(\bar{L}^\alpha_L \gamma^\mu L^\beta_L \right) \\ &+ C'_{LR} \left(\bar{Q}^j_L \gamma_\mu Q^j_L \right) \left(\bar{\ell}^\alpha_R \gamma^\mu \ell^\beta_R \right) + C'_{RR} \left(\bar{d}^j_R \gamma_\mu d^j_R \right) \left(\bar{\ell}^\alpha_R \gamma^\mu \ell^\beta_R \right) \right] \end{split}$$

with flavour structure based on U(2) flavour symmetry [Buttazzo et al 1706.07808] and General Minimal Flavour Violation [Kagan, Volansky, Zupan 0903.1794]

Connection with neutrino currents: SMEFT

[SDG, Fajfer, Kamenik, Novoa-Brunet, 2005.03734]

EFT including right-handed quarks (not leptons)

$$\begin{split} \mathcal{L}_{\text{eff.}} &= \mathcal{L}_{\text{SM}} - \frac{1}{\nu^2} \lambda^q_{ij} \lambda^\ell_{\alpha\beta} \left[C_T \left(\bar{Q}^i_L \gamma_\mu \sigma^a Q^j_L \right) \left(\bar{L}^\alpha_L \gamma^\mu \sigma^a L^\beta_L \right) \right. \\ &+ C_S \left(\bar{Q}^j_L \gamma_\mu Q^j_L \right) \left(\bar{L}^\alpha_L \gamma^\mu L^\beta_L \right) + C'_{RL} \left(\bar{d}^j_R \gamma_\mu d^j_R \right) \left(\bar{L}^\alpha_L \gamma^\mu L^\beta_L \right) \\ &+ C'_{LR} \left(\bar{Q}^j_L \gamma_\mu Q^j_L \right) \left(\bar{\ell}^\alpha_R \gamma^\mu \ell^\beta_R \right) + C'_{RR} \left(\bar{d}^j_R \gamma_\mu d^j_R \right) \left(\bar{\ell}^\alpha_R \gamma^\mu \ell^\beta_R \right) \right] \end{split}$$

with flavour structure based on U(2) flavour symmetry [Buttazzo et al 1706.07808] and General Minimal Flavour Violation [Kagan, Volansky, Zupan 0903.1794]

- $b \rightarrow s\ell\ell$: $C_T + C_S$ and (depending on NP scenario) C'_{IB} , C'_{BI} , C'_{IB}
- $b \rightarrow s \nu \nu$ and $s \rightarrow d \nu \nu$: $C_T C_S$ and C'_{BI}
- Modulated by lepton couplings to 3 generations (sum over $\nu_{e,\mu,\tau}$)
- Right-handed currents suppressed in GMFV but kept to discuss possible breaking, in connection with b → sℓℓ NP scenarios

In the case of Linear Minimal Flavour Violation

- No right-handed currents
- Dark (light) grey: Arbitrary ν_μ and ν_τ only (all three neutrino flavours)
- Red : NP only in muons $(C_S = 0: \times, C_T = 0: +)$
- Purple: Opposite NP effects in muons and taus
- Brown: Hierarchical NP effects according to the generation, proportional to m_{ℓ}

$$(C_S=0: \diamondsuit, C_T=0: \bigtriangleup)$$

In the presence of right-handed currents

- $s \rightarrow d$ not easily correlated to $b \rightarrow s$
- Blue: (G)MFV case
- 1 σ region allowed by $b \rightarrow s \mu \mu$ transitions
 - Green: NP only in muons
 - Purple: Opposite NP effects in muons and taus
 - Red: Hierarchical NP effects according to the generation, proportional to m_ℓ
- Grey: no information on $b \rightarrow s \mu \mu$ and significant NP couplings to 1, 2, 3 ν

$B ightarrow K_J^* (ightarrow K\pi) \ell \ell$ at high $K\pi$ mass

Several resonances at higher $K\pi$ mass and sometimes higher spin

- $K^*(1410), K_0^*(1430), K_2^*(1430)$
- K*(1680), K₃*(1780), K₄*(2045)

LHCb measurements around 1430 MeV

$B o K_J^* (o K \pi) \ell \ell$ at high $K \pi$ mass

Several resonances at higher $K\pi$ mass and sometimes higher spin

• $K^*(1410), K_0^*(1430), K_2^*(1430)$

LHCb measurements around 1430 MeV

- Form factors: general, in HQET, in SCET, but few inputs
- cc loops: quark-had dual (low recoil), LCSR (large recoil, not yet)
- $B
 ightarrow {\cal K}_{J} \mu \mu$ (BR, ${\it F}_{L}, {\it A}_{\it FB}$) analysed in [Lü, Wang;Dey]
- $B
 ightarrow K_2^* \mu \mu$ considered in more detail in [Das, Kindra, Kumar, Mahajan]

- quite similar to $B \rightarrow K^* \mu \mu$ if no tensor op
- identification of optim. obs. at large recoil

 $\Lambda_b \rightarrow \Lambda(^*) \ell \ell$ decays

 $\Lambda(1115) \ J^P = 1/2^+$

decays weakly into $p\pi$ BR and low-recoil angular obs measured by LHCb A 2200 M 2000 data total fit LHCh background P.(4450) 180 180 140 140 P_(4380) Λ(1405) --- Λ(1520) 1400 A(1600) A(1670) 120 --- A(1690) A(1800) -- A(1810) A(1820) A(1830) A(1890) --- A(2100) Δr-- Λ(2110) m_{Kp} [GeV]

 $\Lambda^*(1520)$ $J^P=3/2^$ decays strongly into *pK* not measured by LHCb peak well seen at $q^2=m_{J/\psi}^2$

• Form factors: lattice (low recoil) or LCSR (large recoil, not yet)

• cc loops: quark-hadron dual (low rec) or LCSR (large rec, not yet)

S. Descotes-Genon (IJCLab)

 $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$ fits

 $\Lambda_b \to \Lambda(\to p\pi)\ell^+\ell^-$

$$\frac{d^4\Gamma(\Lambda_b\to\Lambda(\to p\pi)\ell^+\ell^-)}{dq^2d\cos\theta_\ell d\cos\theta_\Lambda d\phi}=\frac{3}{8\pi}K(q^2,\theta_\ell,\theta_\Lambda,\phi)$$

$$\begin{split} & \mathcal{K} = \left(\mathcal{K}_{1ss} \sin^2 \theta_{\ell} + \mathcal{K}_{1cc} \cos^2 \theta_{\ell} + \mathcal{K}_{1c} \cos \theta_{\ell} \right) \\ & + \left(\mathcal{K}_{2ss} \sin^2 \theta_{\ell} + \mathcal{K}_{2cc} \cos^2 \theta_{\ell} + \mathcal{K}_{2c} \cos \theta_{\ell} \right) \cos \theta_{\Lambda} \\ & + \left(\mathcal{K}_{3sc} \sin \theta_{\ell} \cos \theta_{\ell} + \mathcal{K}_{3s} \sin \theta_{\ell} \right) \sin \theta_{\Lambda} \sin \phi \\ & + \left(\mathcal{K}_{4sc} \sin \theta_{\ell} \cos \theta_{\ell} + \mathcal{K}_{4s} \sin \theta_{\ell} \right) \sin \theta_{\Lambda} \cos \phi \,. \end{split}$$

[Böer, Feldmann, van Dyk; Das]

- 10 form factors from lattice QCD [Detmold et al]
- 8 helicity amplitudes
- 10 angular coefficients
- Weak decay of $\Lambda \rightarrow p\pi$, parametrised by asymmetry $\alpha \sim 0.7$
- Polarized Λ_b case in [Blake, Kreps]

$$\begin{split} \mathcal{K}_{1cc} &= \frac{1}{2} \Big[|\mathcal{A}_{\perp 1}^{R}|^{2} + |\mathcal{A}_{||1}^{R}|^{2} + (R \leftrightarrow L) \Big] \,, \\ \mathcal{K}_{2cc} &= + \alpha \operatorname{Re}(\mathcal{A}_{\perp 1}^{R} \mathcal{A}_{||1}^{*R}) + (R \leftrightarrow L) \,, \end{split}$$

$\Lambda_b ightarrow \Lambda(ightarrow p\pi) \ell^+ \ell^-$ angular observables

Large recoil (SCET)

[Böer, Feldmann, van Dyk; Das]

- all form factors are equal or vanish
- any ratio of K is optimised

Low recoil (HQET)

- form factors linear combination of 2 form factors ξ_1 and ξ_2
- one optimised observable $X_1 \equiv K_{1c}/K_{2cc}$
- angular moments available from LHCb
 - largest discrepancy for K_{2c}, 2.6 σ from SM (too large, not physical)
 - for the moment, limited sensitivity to favoured NP scenarios

 $\Lambda_b \to \Lambda^* (\to Kp) \ell^+ \ell^-$

$$\frac{d^{4}\Gamma(\Lambda_{b} \to \Lambda^{*}(\to Kp)\ell^{+}\ell^{-})}{dq^{2}d\cos\theta_{\ell}d\cos\theta_{\Lambda}d\phi} = \frac{3}{8\pi}L(q^{2},\theta_{\ell},\theta_{\Lambda},\phi)$$

$$L = \cos^{2} \theta_{\Lambda} \left(L_{1c} \cos \theta_{\ell} + L_{1cc} \cos^{2} \theta_{\ell} + L_{1ss} \sin^{2} \theta_{\ell} \right) + \sin^{2} \theta_{\Lambda} \left(L_{2c} \cos \theta_{\ell} + L_{2cc} \cos^{2} \theta_{\ell} + L_{2ss} \sin^{2} \theta_{\ell} \right) + \sin^{2} \theta_{\Lambda} \left(L_{3ss} \sin^{2} \theta_{\ell} \cos^{2} \phi + L_{4ss} \sin^{2} \theta_{\ell} \sin \phi \cos \phi \right) + \sin \theta_{\Lambda} \cos \theta_{\Lambda} \cos \phi (L_{5s} \sin \theta_{\ell} + L_{5sc} \sin \theta_{\ell} \cos \theta_{\ell}) + \sin \theta_{\Lambda} \cos \theta_{\Lambda} \sin \phi (L_{6s} \sin \theta_{\ell} + L_{6sc} \sin \theta_{\ell} \cos \theta_{\ell}) S. Descotes-Genon (IJClap) b \rightarrow s\ell\ell and b \rightarrow s\gamma fits$$

- 14 form factors (prelim lattice results [Meinel et al])
- 12 helicity amplitudes
- 12 angular coefficients
- SCET: single form factor, any ratio of *L* optimised
- HQET: two form factors, no non-trivial optim. obs.
- relationships among *L*'s in both limits

$$\begin{split} L_{1c} \propto & \left(\operatorname{Re}(A_{\perp 1}^{L}A_{\parallel 1}^{L*}) - (L \leftrightarrow R) \right), \\ L_{3ss} \propto & \left(\operatorname{Re}(B_{\parallel 1}^{L}A_{\parallel 1}^{L*}) - \operatorname{Re}(B_{\perp 1}^{L}A_{\perp 1}^{L*}) \right. \\ & \left. + (L \leftrightarrow R) \right), \end{split}$$

$\Lambda_b \rightarrow \Lambda^* (\rightarrow Kp) \ell^+ \ell^-$ angular observables

S. Descotes-Genon (IJCLab)

 $b \rightarrow s\ell\ell$ and $b \rightarrow s\gamma$ fits

FPCP 8/6/20 42