

b-baryon decays

Eduardo Rodrigues University of Liverpool On behalf of the LHCb Collaboration

FPCP 2020, 11th June 2020

Motivations – theoretical and experimental

CP violation (CPV) is very well established in meson decays – not just B-meson decays

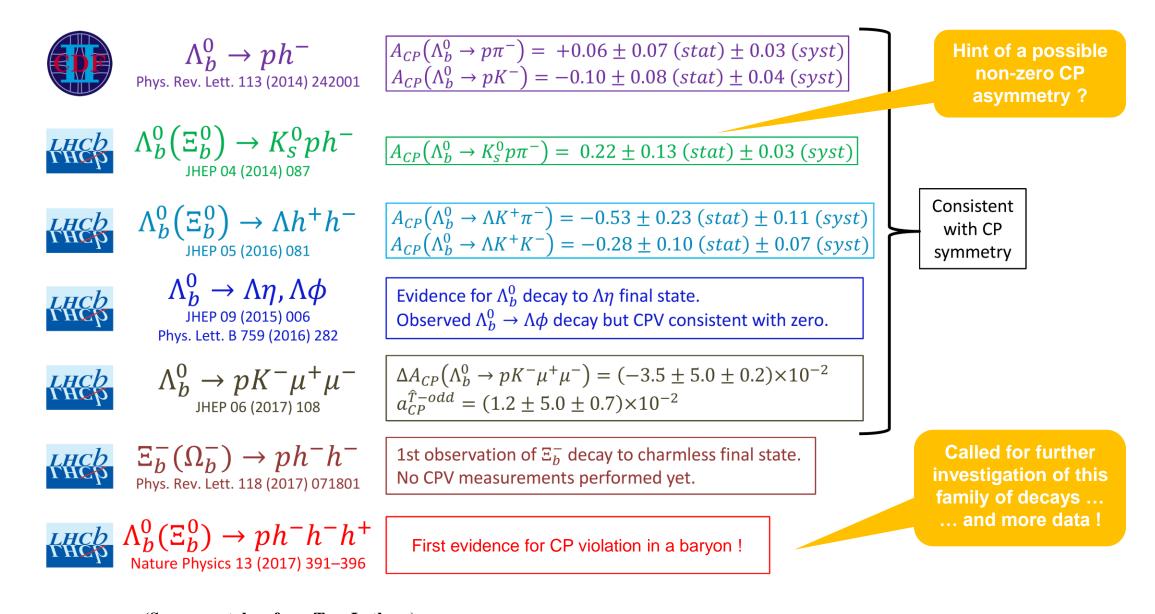
□ But no CPV has yet been observed in decays involving baryons, only

- Evidence for CPV in baryonic B decays, in $B^+ \rightarrow p \ \overline{p} \ K^+$ [PRL 113, 141801 (2014)]
- Evidence for CPV in the b-baryon decay, in $\Lambda_b^0 \rightarrow p \ \pi^- \ \pi^+ \ \pi^-$ [Nat. Phys. 13 (2017) 391]

❑ Due to conservation of baryon number, there can be no b-baryon mixing, hence no indirect CP violation ⇒ CPV in b-baryons only CPV in decay !

□ Theoretical calculations predict asymmetries up to ~20% [Phys. Rev. D 91, 116007 (2015)]

□ Multi-body final states can have a rich resonant structure and exhibit interesting CPV patterns (see e.g. $B^+ \rightarrow 3h$ decays - <u>Phys. Rev. D101 (2020) 012006</u> and refs. therein)


LHCb is ideally suited for these studies:

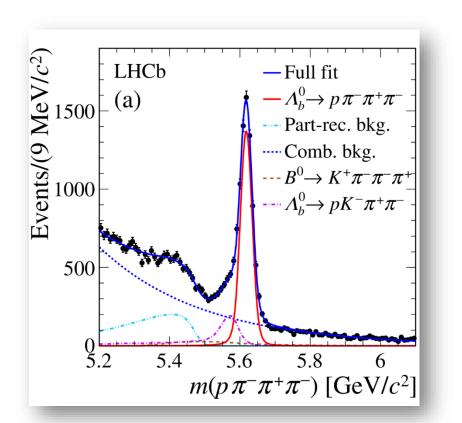
it's a b-baryon factory, with ~1 Λ_b^0 for 2 B^0 produced

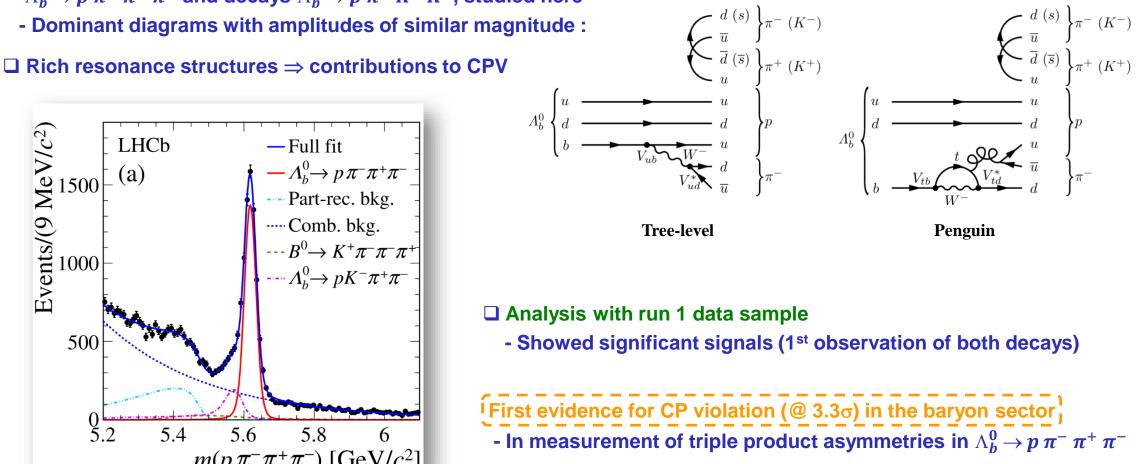
❑ Charmless decays are good candidates to search for CPV in b-baryons: tree-level & Penguin amplitudes expected to be of ~ the same magnitude

	our result	pQCD [5]
$10^6 \mathcal{B}(\Lambda_b \to pK^-)$	$4.8 \pm 0.7 \pm 0.1 \pm 0.3$	$2.0^{+1.0}_{-1.3}$
$10^6 \mathcal{B}(\Lambda_b \to p\pi^-)$	$4.2 \pm 0.6 \pm 0.4 \pm 0.2$	$5.2^{+2.5}_{-1.9}$
$10^6 \mathcal{B}(\Lambda_b \to pK^{*-})$	$2.5 \pm 0.3 \pm 0.2 \pm 0.3$	
$10^6 \mathcal{B}(\Lambda_b \to p \rho^-)$	$11.4 \pm 1.6 \pm 1.2 \pm 0.6$	
$10^2 \mathcal{A}_{CP}(\Lambda_b \to pK^-)$	$5.8\pm0.2\pm0.1$	-5^{+26}_{-5}
$10^2 \mathcal{A}_{CP}(\Lambda_b \to p\pi^-)$	$-3.9 \pm 0.2 \pm 0.0$	-31^{+43}_{-1}
$10^2 \mathcal{A}_{CP}(\Lambda_b \to pK^{*-})$	$19.6 \pm 1.3 \pm 1.0$	
$10^2 \mathcal{A}_{CP}(\Lambda_b \to p \rho^-)$	$-3.7 \pm 0.3 \pm 0.0$	

Quick recap – overview of searches for CP violation in b-baryons

First evidence for CP violation in the baryon sector


Nat. Phys. 13 (2017) 391


□ Family of decays $\Lambda_b^0 \rightarrow p \ h^- \ h'^+ \ h''^-$ ($h^{(\prime,\prime\prime)} = K, \pi$) interesting for CP violation studies

Large CP violating effects expected for

 $\Lambda_b^0 \to p \ \pi^- \ \pi^+ \ \pi^-$ and decays $\Lambda_b^0 \to p \ \pi^- \ K^+ \ K^-$, studied here

- Dominant diagrams with amplitudes of similar magnitude :

FPCP 2020, 11th June 2020

LHCb studies of Λ_b^0 , $\Xi_b^0 \rightarrow p \ h^- \ h'^+ \ h''^-$ decays

Nat. Phys. 13 (2017) 391

Measurement of matter-antimatter differences in beauty baryon decays JHEP 08 (2018) 039

Search for *CP* violation using triple product asymmetries in $\Lambda_b^0 \rightarrow p K^- \pi^+ \pi^-, \Lambda_b^0 \rightarrow p K^- K^+ K^$ and $\Xi_b^0 \rightarrow p K^- K^- \pi^+$ decays

(*)

Eur. Phys. J. C79 (2019) 745

Measurements of CP asymmetries in charmless four-body Λ_b^0 and Ξ_b^0 decays

(*)

LHCb-PAPER-2019-028

Search for *CP* violation and observation of *P* violation in $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$ decays

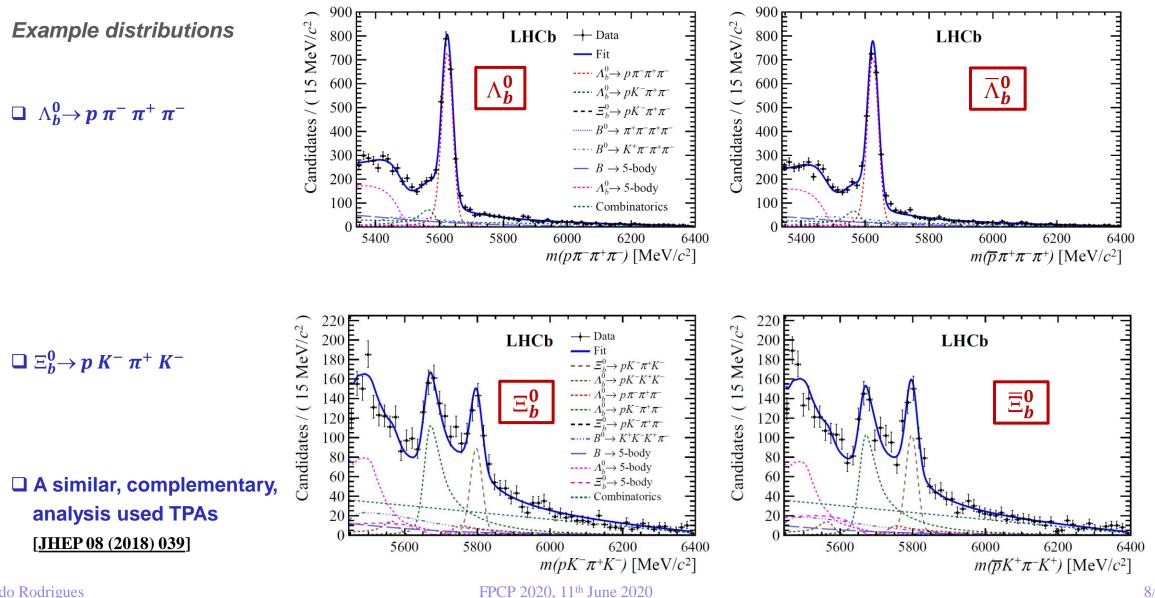
(*) Presented in this talk

Measurements of CP asymmetries in charmless 4-body Λ_b^0 and Ξ_b^0 decays

Eur. Phys. J. C79 (2019) 745

Q Run 1 analysis of direct CP asymmetries in charmless 4-body Λ_b^0 and Ξ_b^0 decays

Eur. Phys. J. C79 (2019) 745


Run 1 direct CPV analysis of Λ_b^0 and Ξ_b^0 decays

Family of decays Λ^0_b , $\Xi^0_b o p \ h^- \ h'^+ \ h''^-$ (h = K, π)	Decay mode	Signal yields	
Direct Delta-CP asymmetries measured for 18 final states	·	X_b^0	\overline{X}^0_b
- Either in the full phase space of the decay	$\Lambda^0_b \to p \pi^- \pi^+ \pi^-$	2335 ± 56	$2264 \pm$
	$\Lambda_b^0 \to p K^- \pi^+ \pi^-$	6807 ± 92	$6232~\pm$
- Or exploring specific regions of the decay kinematics	$\Lambda_b^0 \to p K^- K^+ \pi^-$	555 ± 38	$630 \pm$
$\Delta \mathcal{A}^{CP} \equiv \mathcal{A}^{CP}_{\text{no-c}} - \mathcal{A}^{CP}_{\text{c}} \qquad \qquad 6 \Lambda^{0}_{\mathbf{h}} \text{ modes}$	$\Lambda^0_b \to p K^- K^+ K^-$	2312 ± 54	2248 \pm
	$\Xi_b^0 \to p K^- \pi^+ \pi^-$	180 ± 28	$252~\pm$
$\mathcal{A}_{no-c}^{CP}(\mathcal{A}_{c}^{CP})$ = asymmetry measured in the	$\Xi_b^0 \to p K^- \pi^+ K^-$	265 ± 25	$305~\pm$
	$\Lambda_b^0 \to (\Lambda_c^+ \to p \pi^- \pi^+) \pi^-$	1607 ± 40	1586 \pm
charmless (charmed, control) decay mode	$\Lambda_b^0 \to (\Lambda_c^+ \to p K^- \pi^+) \pi^-$	24687 ± 159	24052 ± 1
Charmless mode Control channel	$\varXi^0_b \to (\varXi^+_c \to p K^- \pi^+) \pi^-$	259 ± 18	$260~\pm$
	$\Lambda_b^0 \to p \pi^- \pi^+ \pi^- \text{ (LBM)}$	498 ± 25	455 \pm
$\Lambda_b^0 \to p\pi^-\pi^+\pi^- \qquad \Lambda_b^0 \to (\Lambda_c^+ \to p\pi^-\pi^+)\pi^-$	$\Lambda_b^0 \to p K^- \pi^+ \pi^-$ (LBM)	3217 ± 61	2929 \pm
$\Lambda_b^0 \to pK^-\pi^+\pi^- \qquad \Lambda_b^0 \to (\Lambda_c^+ \to pK^-\pi^+)\pi^-$	$\Lambda_b^0 \to p K^- K^+ K^- \ (\text{LBM})$	1240 ± 38	1146 \pm
$\begin{array}{ll} \Lambda_b^0 \to pK^-K^+\pi^- & \Lambda_b^0 \to (\Lambda_c^+ \to p\pi^-\pi^+)\pi^- \\ \Lambda_b^0 \to pK^-K^+K^- & \Lambda_b^0 \to (\Lambda_c^+ \to pK^-\pi^+)\pi^- \end{array}$	$\Lambda_b^0 \to p a_1(1260)^-$	422 ± 23	$425~\pm$
	$\Lambda_b^0 \to \varDelta(1232)^{++} \pi^- \pi^-$	783 ± 30	771 \pm
$\Xi_b^0 \to pK^-\pi^+\pi^- \qquad \Xi_b^0 \to (\Xi_c^+ \to pK^-\pi^+)\pi^-$ $\Xi_b^0 \to (\Xi_c^+ \to pK^-\pi^+)\pi^-$	$\Lambda_b^0 \to N(1520)^0 \rho(770)^0$	241 ± 16	230 \pm
$\Xi_b^0 \to pK^-\pi^+K^- \qquad \Xi_b^0 \to (\Xi_c^+ \to pK^-\pi^+)\pi^-$	$\Lambda_b^0 \to p K_1(1410)^-$	548 ± 26	$488~\pm$
9 Λ_b^0 modes =	$\Lambda^0_b\to\varDelta(1232)^{++}K^-\pi^-$	998 ± 37	$895~\pm$
$\Delta \mathcal{A}^{CP} \Rightarrow$ cancel to 1 st order production, detection	$\Lambda_b^0 \to \Lambda(1520)\rho(770)^0$	167 ± 14	160 \pm
and reconstruction asymmetries	$\Lambda_b^0 \to N(1520)^0 K^*(892)^0$	977 ± 33	$856~\pm$
	$\Lambda_b^0 \to \Lambda(1520)\phi(1020)$	192 ± 15	172 \pm
L	$\Lambda_b^0 \to (pK^-)_{\text{high-mass}}\phi(1020)$	548 ± 25	$542 \pm$

Eduardo Rodrigues

FPCP 2020, 11th June 2020

Run 1 direct CPV analysis of Λ_b^0 and Ξ_b^0 decays

8/18

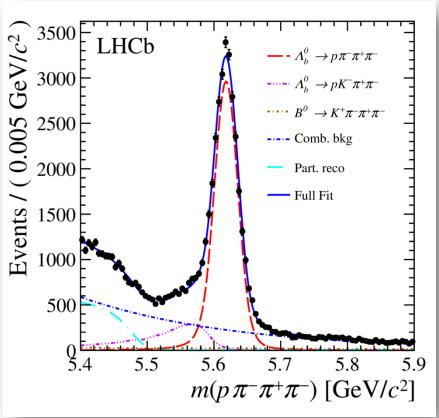
Search for CP violation and observation of P violation in $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$ decays

□ <u>LHCb-PAPER-2019-028</u>

Updated analysis with combined run 1 and 2 data sample

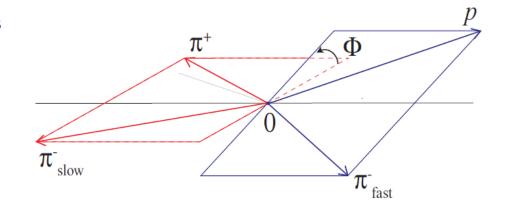
□ Asymmetries measured with 2 independent methods

- Triple product asymmetries
- Unbinned energy test


Run 1 & 2 analysis of $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$

Compared with the previous run 1 analysis

- □ Inclusion of run 2 data (2015-17) significantly increases data sample
- Optimised selection
- \Rightarrow data sample (signal yield) 4× larger compared to run 1 sample

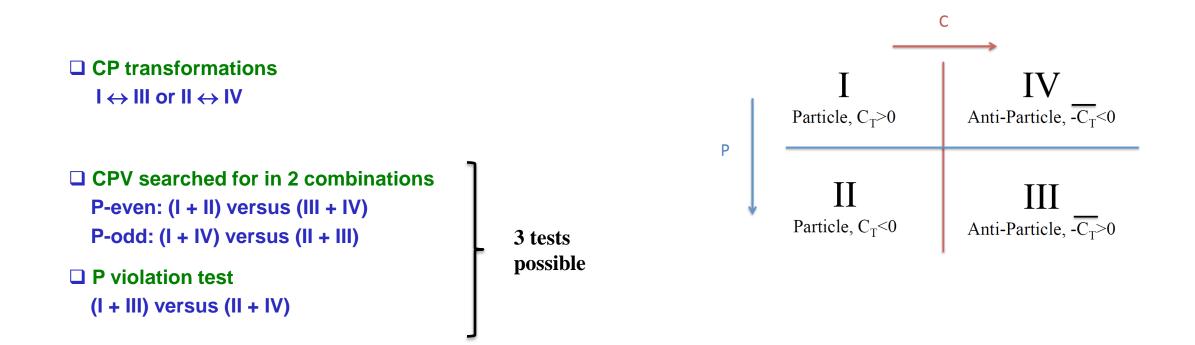

- Searches for CP and P violation measured with 2 independent methods
 - 1) TPAs with improved binning schemes
 - Both local and integrated asymmetries considered
 - 2) Unbinned energy test
 - Designed to look for localised differences in phase-space between 2 samples

Intermezzo – Triple Product Asymmetries (TPAs)

□ Scalar triple products from momenta of 3 final-state particles (in the rest frame of the mother particle)

$$C_{\widehat{T}} \equiv \vec{p}_{p} \cdot \left(\vec{p}_{\pi_{\text{fast}}} \times \vec{p}_{\pi^{+}}\right)$$
$$\overline{C}_{\widehat{T}} \equiv \vec{p}_{\overline{p}} \cdot \left(\vec{p}_{\pi_{\text{fast}}^{+}} \times \vec{p}_{\pi^{-}}\right)$$

□ Triple product (T-odd) asymmetries


(by construction largely insensitive to global production and detector-induced charge asymmetries)

$$A_{\hat{T}} = \frac{N_{\Lambda_b^0}(C_{\hat{T}} > 0) - N_{\Lambda_b^0}(C_{\hat{T}} < 0)}{N_{\Lambda_b^0}(C_{\hat{T}} > 0) + N_{\Lambda_b^0}(C_{\hat{T}} < 0)} \qquad \qquad \overline{A}_{\hat{T}} = \frac{N_{\overline{\Lambda}_b^0}(-\overline{C}_{\hat{T}} > 0) - N_{\overline{\Lambda}_b^0}(-\overline{C}_{\hat{T}} < 0)}{N_{\overline{\Lambda}_b^0}(-\overline{C}_{\hat{T}} > 0) + N_{\overline{\Lambda}_b^0}(-\overline{C}_{\hat{T}} < 0)}$$

CP and **P** violating asymmetries

$$a_{CP}^{\hat{T}-odd} = \frac{1}{2} (A_{\hat{T}} - \overline{A}_{\hat{T}}) \qquad \qquad a_{P}^{\hat{T}-odd} = \frac{1}{2} (A_{\hat{T}} + \overline{A}_{\hat{T}})$$

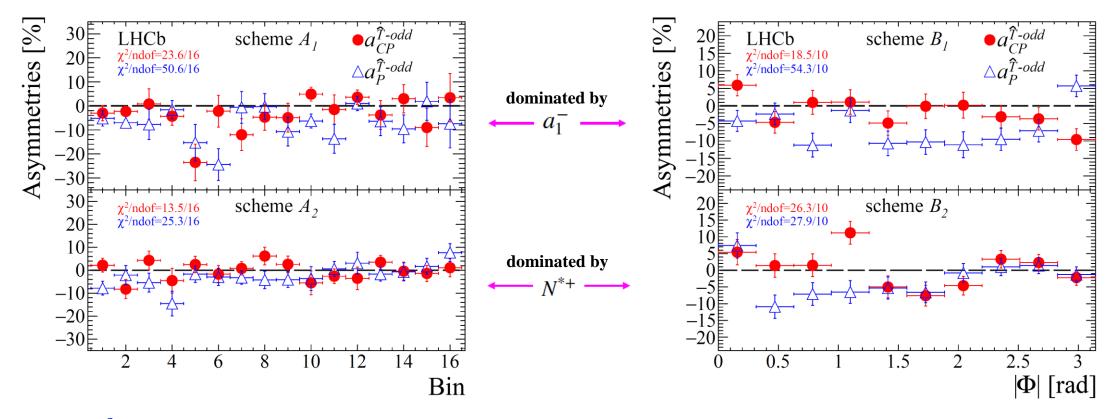
□ Data hence divided in 4 statistically independent sub-samples, depending on flavour of Λ_b^0 and sign of the triple-product asymmetry

Run 1 & 2 analysis of $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$ – integrated TPA results

TPAs integrated over the phase-space

Observation of P violation at 5.5σ

 \Box CP conserved at > 2.9 σ


$$a_P^{\widehat{T}\text{-odd}} = (-4.0 \pm 0.7 \pm 0.2)\%$$

 $a_{CP}^{\widehat{T}\text{-odd}} = (-0.7 \pm 0.7 \pm 0.2)\%$

Run 1 & 2 analysis of $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$ – binned TPA results

□ Improved binning schemes to maximise sensitivity to CPV, exploring the 2-body resonances

Scheme A: 16 bins in polar and azimuthal angles of the proton (Δ^{++}) in the Δ^{++} (N^{*+}) rest frame

Scheme B: 10 bins in Φ , as in previous measurement

(The χ^2 per number of degrees-of-freedom is calculated with respect to the null hypothesis with stat. + syst. uncertainties)

Run 1 & 2 analysis of $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$ – binned TPA results

Observation of P violation at 5.5σ

\Box No evidence for CPV (highest significance at 2.9 σ in B2)

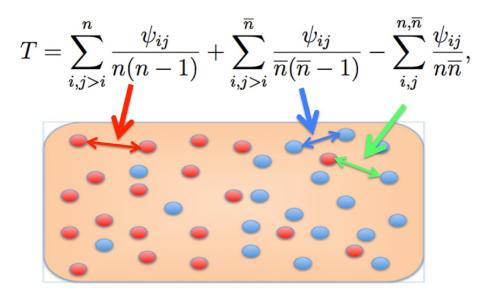
Table 2: Results obtained with different binning schemes; the *p*-values take into account systematic effects and are reported for the *CP*- and *P*-conserving hypotheses.

Binning scheme	Dominant contribution	Hypothesis	<i>p</i> -value
A_1	$\Lambda_b^0 \to p a_1^-$	CP-conserving	9.8×10^{-2}
(helicity angles)		P-conserving	1.8×10^{-5}
A_2	$\Lambda^0_b \! \to N^{*+} \pi^-$	CP-conserving	6.4×10^{-1}
(helicity angles)		P-conserving	6.4×10^{-2}
B	Entire sample	CP-conserving	5.0×10^{-3}
$(in \Phi)$		<i>P</i> -conserving	$3.5 imes 10^{-7}$
B_1	$\Lambda_b^0 \to p a_1^-$		
$(in \Phi)$		<i>P</i> -conserving	4.3×10^{-8}
B_2	$\Lambda_b^0 \to N^{*+} \pi^-$	CP-conserving	3.4×10^{-3}
$(\mathrm{in} \Phi)$		<i>P</i> -conserving	1.9×10^{-3}

Run 1 & 2 analysis of $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$ – energy test description

Energy test

- Model-independent unbinned test sensitive to local differences between 2 samples [Phys. Rev. D 84, 054015 (2011)]
- Can provide superior discriminating power compared to traditional χ^2 tests
- Test via calculation of a test statistic T


Samples

Particle & antiparticle decays in the phase-space

Test statistic T

n (\overline{n}): number of Λ_b^0 ($\overline{\Lambda}_b^0$) candidates d_{ij} : Euclidian distance in phase-space δ : distance scale to be optimised $\psi(d_{ij}) = e^{-d_{ij}^2/2\delta^2}$: pair weight

□ Scale at which CPV may appear is unknown ⇒ different distance scales δ are probed...

(Taken from Gediminas Sarpis)

Eduardo Rodrigues

Run 1 & 2 analysis of $\Lambda_b^0 \rightarrow p \pi^- \pi^+ \pi^-$ – energy test results

 \Box The p-values from the energy tests for different distance scales δ and test configurations

 3σ deviation from no CPV hypothesis for 1 distance parameter

Distance scale δ	$1.6 \ { m GeV}^2/c^4$	$2.7 \ { m GeV^2}/c^4$	$13 \ { m GeV}^2/c^4$
p-value (CP conservation, P even)	3.1×10^{-2}	$2.7 imes 10^{-3}$,	1.3×10^{-2}
p-value (CP conservation, P odd)	1.5×10^{-1}	6.9×10^{-2}	$6.5 imes 10^{-2}$
p-value (P conservation)	1.3×10^{-7}	4.0×10^{-7}	1.6×10^{-1}

P violation exceeds 5σ for 2 distance parameters

Observation of P violation at 5.3σ

 \Box CP conserved at > 3.0 σ

Conclusions & outlook

Study of b-baryons is a hot area of Flavour Physics

□ Many topics – production, spectroscopy, CPV, exotic states, etc.

□ LHCb but also ATLAS and CMS in the game

P violation in b-baryon decays observed for the first time

□ But so far, stil no CPV observed

The upgraded LHCb experiment will boost the data samples, making many new and/or more precise measurement possible

□ Much more physics to expect !

Purely baryonic decay processes (i.e. decay processes involving only spin-carrying particles) are yet to be explored – complementary avenue e.g. for CPV studies

- See Phys. Rev. D 94, 014027 (2016); Scientific Reports 9, 1358 (2019)

Thank you for listening