Experimental overview on proton-nucleus collisions at the LHC

Conference on Flavour Physics and CP violation
June 10th 2020

Cynthia Hadjidakis
IJCLab, Université Paris-Saclay, France
Outline

• Why proton-nucleus at the LHC?
• Latest p-Pb measurements:
 • Electroweak bosons and Drell-Yan
 • Open heavy flavour
 • Quarkonium
 • Azimuthal angular correlations of charged particles, open and hidden heavy flavour

Selection of new results from ALICE, ATLAS, CMS and LHCb
Why proton-nucleus at the LHC?

Reference to Pb-Pb measurements and Quark Gluon Plasma studies

Cold nuclear matter (CNM) effects
- nuclear modification of the parton distribution functions (PDFs) depending on x, the nucleon longitudinal momentum fraction of the struck parton, and the hard scale, Q^2
 - EPPS16 constrained by LHC dijet measurements in p-Pb
- gluon density saturation at high energy and low hard scale (low x and low Q^2)
- medium-induced radiative parton energy loss in the initial and/or final state
- multiple scatterings of partons (initial state) or produced particle (final state)
- produced particle breakup by interactions with comoving particles/partons
Collective behaviors (QGP-like) have been discovered in high-multiplicity pp and p-Pb collisions

- Multiplicity defined as the number of charged particles per event: N_{ch}
- e.g.: long-range near-side angular correlations in high-multiplicity events for charged particles in p-Pb collisions

Origin of collectivity in small systems

- Similar N_{ch} in high-multiplicity pp and p-Pb collisions w.r.t. peripheral Pb-Pb collisions
- Is a droplet of QGP created in small systems? Or is it an effect from initial-state or from hadronisation in a high-multiplicity environment?

pp and p-A collisions at high mult.: search for and study the onset of the QGP formation
Proton-nucleus measurements at the LHC

LHC p-Pb collisions
- $\sqrt{s_{\text{NN}}} = 5.02, 8.16$ TeV
- 2 beam configurations: p-Pb and Pb-p

Shift in rapidity of the nucleon-nucleon center of mass system with respect to the laboratory frame by $\Delta y = 0.465$ in the proton beam direction imposed by the LHC two-in-one magnet design: $y_{\text{cms}} = y_{\text{lab}} - \Delta y$

LHC in fixed target mode (see Daniele Marengotto talk)
- energy range: $\sqrt{s_{\text{NN}}} = 68 - 110$ GeV
- collision systems: pHe, pNe, pAr
Electroweak bosons: W, Z

- W, Z: do not carry colour charges and do not suffer final state effects: they can constrain quark and anti-quark nPDF at large scale Q^2

- Precise W measurements at 8.16 TeV
 - W probes $10^{-3} < x_{Pb} < 10^{-1}$
 - Inconsistent with free PDF: W data favor nuclear shadowing at forward rapidity
 - Data uncertainties lower than nPDF uncertainties

- More precise measurements at 8.16 TeV with Z bosons
Drell-Yan (γ^*, Z)

\[R_{FB} = \frac{\sigma(y > 0)}{\sigma(y < 0)} \]

CMS-PAS-HIN-18-003

First Drell-Yan measurements in p-Pb collisions for $15 < M_{\mu\mu} < 600$ GeV
- Complementary to W boson: different mass probed (different scales Q²)
- Forward to backward rapidity ratio, R_{FB}:
 - Partial cancellation of theoretical and experimental uncertainties
 - $R_{FB} < 1$ at large mass and and large y_{cms} consistent with EPPS16 (mixture of shadowing and anti-shadowing)
Open heavy-flavour: R_{pPb}

\[R_{pA} = \frac{1}{A} \frac{\sigma_{PA}}{\sigma_{pp}} \]

ALICE, JHEP12(2019)092

- **Open heavy-flavour R_{pPb} vs p_T and y_{cms}**
 - Sensitive to gluon distribution
 - Mid-rapidity: compatible with scaled pp yield over full p_T range
 - Backward rapidity (Pb-going): compatible with scaled pp yield except at $y_{cms} < -4$
 - Forward rapidity (p-going): large suppression

Comparison with models

- nPDF: strong nuclear shadowing favored at forward rapidity but not at mid-rapidity
- CGC: good description of mid- and forward rapidity data from saturation of gluon density in nucleus
Charmonium: R_{pPb}

ALICE, JHEP07(2018)16

J/ψ R_{pPb} vs y_{cms}
- Backward rapidity (Pb-going): compatible with scaled pp yield
- Forward rapidity (p-going): large suppression concentrated at low p_T

Comparison with models
- nPDF: strong nuclear shadowing favored at forward rapidity
- CGC: good description of forward rapidity data from gluon density saturation in nucleus
- Coherent energy loss: y-dependence well reproduced
- Comovers (nPDF and comoving particles/partons): reproduce the magnitude of the data
- Transport (nPDF and hot fireball in central collisions): underestimates ALICE backward rapidity data
Bottomonium: R_{ppb}

$Y(1S)$ R_{ppb} vs y_{cms}
- Different mass than J/ψ: different scale
- Backward rapidity: compatible with pp scaled yield at $y_{cms} \sim -4$
- Mid- and forward rapidity: $Y(1S)$ suppressed

Comparison with models
- nPDF: strong nuclear shadowing favored at $y_{cms} > 0$ and ALICE R_{ppb} overestimated at $y_{cms} < 0$ and low p_T
- Coherent energy loss: R_{ppb} overestimated at $y_{cms} > 0$
Quarkonium excited states

Relative suppression of excited states vs y_{cms}

• At backward rapidity (Pb-going): excited states more suppressed than ground state
• Initial state effect (nPDF, CGC,...) or coherent energy loss models predict similar suppression for ground and excited states
• Excited states less bound: additional final-state effect on heavy quark pair (by comoving particles/partons) can explain the measured relative suppression

<table>
<thead>
<tr>
<th>State</th>
<th>J/ψ</th>
<th>ψ'</th>
<th>Υ(1S)</th>
<th>Υ(2S)</th>
<th>Υ(3S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass [GeV]</td>
<td>3.10</td>
<td>3.68</td>
<td>9.46</td>
<td>10.02</td>
<td>10.36</td>
</tr>
<tr>
<td>ΔE [GeV]</td>
<td>0.64</td>
<td>0.05</td>
<td>1.10</td>
<td>0.54</td>
<td>0.20</td>
</tr>
<tr>
<td>ΔM [GeV]</td>
<td>0.02</td>
<td>0.03</td>
<td>0.06</td>
<td>-0.06</td>
<td>-0.07</td>
</tr>
<tr>
<td>r_0 [fm]</td>
<td>0.50</td>
<td>0.90</td>
<td>0.28</td>
<td>0.56</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Cynthia Hadjidakis FCP2020 June 2020
Open vs hidden heavy-flavour

Open and hidden charm and beauty production for $p_T > 0$

- Useful to investigate final-state effects
- No significant difference between D and J/ψ R_{pPb}: J/ψ modification dominated by initial state effects
- Y(1S) systematically lower than J/ψ from b in p-Pb w.r.t. pp at forward rapidity: striking since the Y(1S) is more bound than the J/ψ
Relative yield measurements

Self-normalized yield vs self-normalized charged-particle multiplicity

- Useful to link pp, p-Pb and Pb-Pb
- J/ψ yield increases with increasing multiplicity
- p-Pb backward rapidity (Pb-going): stronger than linear increase and compatible with pp@7 TeV and Pb-Pb@5.02 TeV
- p-Pb forward rapidity (p-going): less than backward rapidity increase
Azimuthal anisotropies

Overlap region in non-central heavy-ion collisions is asymmetric, in « almond » shape

Momentum anisotropy of final-state particles
Quantified in terms of Fourier coefficient v_n

Ψ_n: symmetry planes

Anisotropic flows (v_n) sensitive to the initial geometry and properties of the produced medium

$$\frac{dN}{d\varphi} \propto 1 + 2 \sum_{n=1}^{\infty} v_n \cos[n(\varphi - \Psi_n)].$$
Azimuthal anisotropies

Overlap region in non-central heavy-ion collisions is asymmetric, in « almond » shape

Momentum anisotropy of final-state particles
Quantified in terms of Fourier coefficient v_n

Ψ_n: symmetry planes

$\frac{dN}{d\varphi} \propto 1 + 2 \sum_{n=1}^{\infty} v_n \cos[n(\varphi - \Psi_n)]$.

Anisotropic flows (v_n) sensitive to the initial geometry and properties of the produced medium

Charged particles in high-multiplicity pp and p-Pb events

– Significant elliptic (v_2) and triangular (v_3) flow
– v_n compatible with Pb-Pb at low N_{ch}
– Ordering of flow coefficient $v_2 > v_3 > v_4$ as in Pb-Pb and Xe-Xe

Models

– Hydrodynamic model describes well high-multiplicity p-Pb events, mid-central and central Pb-Pb and Xe-Xe collisions
Azimuthal anisotropies at large p_T

High-p_T charged particles
- Positive elliptic and triangular flow measured for high-p_T charged particles in correlation with another particle or a jet
- R_{pPb} consistent with unity: no nuclear suppression

Jet quenching model
- Flows described by jet quenching model (medium modification of the yield from partons losing energy in QGP)
- Can not describe both v_n and R_{pPb}: how to reconcile v_n and R_{pPb} at large p_T?
Open and hidden heavy-flavour: v_2

Open heavy flavour
- First measurement of b flow in p-Pb: no significant flow for D^0 from B mesons
- Flavor hierarchy: v_2 (D) > v_2 (B) at $p_T < 3$ GeV/c similarly to Pb-Pb: common flow velocity?
- Gluon saturation model (CGC) reproduces the flavour hierarchy

J/ψ
- v_2 found positive with similar magnitude than in Pb-Pb: common mechanism in Pb-Pb and p-Pb at the origin of v_2?
- Different theoretical expectations for Y(1S) v_2 in p-Pb (Transport model vs CGC model): experimentally challenging!
Conclusion and outlook

• Many new and final results in p-Pb collisions at the LHC! Useful to understand and constrain nuclear effects at low or high multiplicity in p-Pb
 - Electroweak bosons production and first Drell-Yan R_{FB}: deviation of the measurements from free-PDF calculations at forward rapidities
 - Open heavy flavour and quarkonium ground states R_{pPb}: production largely suppressed at forward rapidity and low p_T (and favour a strong gluon nuclear shadowing), moderate or no suppression at mid- and backward rapidity
 - Quarkonium excited states: relative suppression w.r.t. ground states at backward rapidity where the multiplicity is the largest
 - Azimuthal angular anisotropies: non-zero flows measured for low and high-p_T charged particles, open charm and J/ψ but not for open beauty: common mechanism as in Pb-Pb or initial-state effects?

• What next?
 - High luminosity p-Pb in Run3/4 very useful for rare probes and correlation studies: $L_{pPb} = 1.2$/pb for ATLAS, CMS and $L_{pPb} = 0.6$/pb for ALICE, LHCb
 - Fixed target at LHC: system size scan, lower energy in-between SPS and nominal RHIC

CERN Yellow Report, arXiv:1812.06772
CERN-PBC-REPORT-2019-001
backup slides
J/ψ and ψ(2S) in high-multiplicity pp collisions

Self-normalized yield vs self-normalized charged-particle multiplicity
• Stronger than linear increase
• Various mechanisms (color string reconnection, percolation, gluon saturation) responsible for multiplicity dependent reduction of \(dN_{\text{ch}}/d\eta \)

Double ratio \(\psi(2S) / J/\psi \)
• Hint of a multiplicity dependence of \(\psi(2S) \) relative suppression w.r.t. \(J/\psi \)?
• Comovers model predicts a stronger suppression at high multiplicity while it reproduces well \(\psi(2S) \) relative suppression in p-Pb
• Charm and beauty flow from open heavy flavor muons also measured in high multiplicity events in pp at 13 TeV: flow for muons from charm decays consistent with charged hadrons and flow for muons from beauty decays consistent with zero
Prompt charm pair production in p-Pb

First double charm production in p-Pb at 8.16 TeV
- Like-sign production enhanced by about a factor 3 at $y_{\text{cms}} > 0$ and even more at $y_{\text{cms}} < 0$

Effective cross-section σ_{eff}
- Effective transverse overlap area of the partonic correlation that produces DPS: process independent
- Increases with increasing rapidity and different for D^0-D^0 and $J/\psi-D^0$

\[\sigma_{\text{eff}} = \frac{\sigma^A \sigma^B}{(1 + \delta_{AB})\sigma_{\text{DPS}}^{AB}} \]
$\chi_{c1}(3872)$ production in high-multiplicity pp

The nature of $\chi_{c1}(3872)$

- Hadronic molecule, tetraquark or charmonium-molecule mix?

$\chi_{c1}(3872)$ production in pp collisions vs multiplicity

- No significant dependence with multiplicity for non-prompt $\chi_{c1}(3872)$ / $\psi(2S)$
- Relative suppression of prompt $\chi_{c1}(3872)$ with increasing event multiplicity
- Comoving interaction model describes the data only by considering a hadronic size of about 1.3 fm for the $\chi_{c1}(3872)$, disfavoring the molecular state hypothesis

A. Esposito et al. Paper in preparation
Strangeness enhancement in small systems

- Strangeness production in AA: first QGP signature proposed *Rafelski PRL48(1982)1066*
- Strange to non-strange particle ratios increase with event multiplicity in Pb-Pb but also in pp and p-Pb: similar values for similar N_{ch}
Strangeness enhancement in small systems

- Strangeness production in AA: first QGP signature proposed Rafelski PRL48(1982)1066
- Strange to non-strange particle ratios increase with event multiplicity in Pb-Pb but also in pp and p-Pb: similar values for similar N_{ch}

- Baryon-to-meson ratios Λ/K^0_s and p/π do not increase significantly → increase is not mass but strangeness related
Strangeness enhancement in small systems

- Strangeness production in AA: first QGP signature proposed Rafelski *PRL*48(1982)1066
- Strange to non-strange particle ratios increase with event multiplicity in Pb-Pb but also in pp and p-Pb: similar values for similar N_{ch}

- Baryon-to-meson ratios Λ/K^0_s and p/π do not increase significantly → increase is not mass but strangeness related
- **Hierarchy of increase** with strangeness content
- **Models**
 - models with color ropes - interactions between produced strings - (DIPSY) and radial expansion (EPOS) qualitatively reproduce the measured trend with multiplicity
 - PYTHIA8: no evolution with multiplicity