Enhanced production of (multi-)strange hadrons in high multiplicity pp collisions

18th FPCP, 10th June 2020

Silvia Delsanto on the behalf of ALICE collaboration

Università degli studi di Torino
University of Witwatersrand and iThemba LABS
Strange hadron production: key tool for understanding hadronization in different environments

Strangeness enhancement:

- Enhanced production of strange hadrons was observed in heavy-ion collisions with respect to elementary collisions
- Originally proposed as a signature of QGP formation in nuclear collisions (Rafelsky, Muller[1])
 - Lower Q-value for $s\bar{s}$ relative to H_sH_s formation
 - Faster equilibration in partonic medium

Detectors used for strangeness analysis:

TPC (|\(\eta\)| < 0.9)
- Gas-filled detector
- Tracking, vertexing, PID (dE/dx)

ITS (|\(\eta\)| < 0.9)
- 6 layers of silicon detectors
- Triggering, tracking, (secondary) vertexing

V0A (2.8 < \(\eta\) < 5.1) and **V0C** (-3.7 < \(\eta\) < -1.7)
- Forward-rapidity arrays of scintillators
- Triggering, beam gas rejection, multiplicity estimator

TOF (|\(\eta\)| < 0.9)
- Made by MRPCs
- PID
- Pile-up rejection
Multiplicity → Number of particles produced in a defined kinematic region

Multiplicity estimation:

- data sample divided in V0M amplitude classes
- **Average multiplicity** → measurement of the primary charged particles at central rapidity for each V0M amplitude class

![Graph showing V0M multiplicity classes](image)
Particle Identification techniques:
• Energy Loss → ITS TPC

• Time of Flight → TOF
Analyses in pp collisions at LHC

<table>
<thead>
<tr>
<th>\sqrt{s} (GeV)</th>
<th>vs multiplicity</th>
<th>Published results on strangeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.02</td>
<td>Yes</td>
<td>NEW for this conference!</td>
</tr>
</tbody>
</table>
Particle reconstruction via weak decay topology. Cuts are applied on kinematical, geometrical and topological variables.

V0s:
- \(\Lambda \rightarrow p + \pi^- / \bar{\Lambda} \rightarrow \bar{p} + \pi^+ \) (BR= 69.2%)
- \(K^0_S \rightarrow \pi^+ + \pi^- \) (BR= 63.9%)

Neutral particles decaying into two particles with opposite charge → charge conservation

Cascades:
- \(\Xi^- \rightarrow \Lambda + \pi^- / \Xi^0 \rightarrow \bar{\Lambda} + \pi^+ \) (BR=99.9%)
- \(\Omega^- \rightarrow \Lambda + K^- / \Omega^0 \rightarrow \bar{\Lambda} + K^+ \) (BR= 67.8%)

The reconstructed \(\Lambda \) candidate is associated to a “bachelor” track to obtain the cascade candidate

\[
\begin{align*}
K^0_S & \quad M=497.61 \text{ MeV/c}^2 \\
& \quad c\tau = 2.68 \text{ cm} \\
\Lambda & \quad M=1115.68 \text{ MeV/c}^2 \\
& \quad c\tau = 7.89 \text{ cm} \\
\Xi & \quad M=1321.71 \text{ MeV/c}^2 \\
& \quad c\tau = 4.91 \text{ cm} \\
\Omega & \quad M=1672.45 \text{ MeV/c}^2 \\
& \quad c\tau = 2.46 \text{ cm}
\end{align*}
\]
Invariant mass distributions for V0s and Cascades reconstructed for selected p_T and multiplicity bins→polynomial background and Gaussian peak
The ϕ meson is reconstructed via invariant mass analysis from K^\pm identified with TPC and TOF

- Geometrical and kinematical cuts
- Primary tracks selection
- TPC PID selection $|N\sigma_{K,TPC}| < 2$ with TOF “veto” $|N\sigma_{K,TOF}| < 3$

Invariant mass spectra

- Combinatorial background subtraction
- Polynomial residual background and Voigtian peak fit

$\phi \rightarrow K^+ + K^- \ (BR = 48.9\%)$

$M = 1019.5 \ \text{MeV/c}^2$
$c\tau = 46.5 \ \text{fm}$
The p_T spectra became harder as the multiplicity increases—evolution is similar to large systems where spectra hardening is connected to hydrodynamical radial expansion of the produced medium (radial flow).
Blast-Wave model:

- Thermalized medium (QGP) expands with a common $\langle \beta_T \rangle$ and undergoes to istanteneous kinematic freeze-out at T_{kin}

Simultaneous BW fit to π, K and p spectra to:

- Predict spectra of K^0_S, Λ, Ω, Ξ, K^{*0} and ϕ
 - Strange hadrons spectra reasonably described by BW model→strange particles follow a common motion→radial flow
 - Not true for resonances!

- Evaluate T_{kin} vs $\langle \beta_T \rangle$
 - At similar multiplicities:
 - Similar values for pp and p-Pb collisions
 - Lower values for Pb-Pb collisions
Avarage p_T as a function of multiplicity is obtained from the corrected spectra and the extrapolation at $p_T=0$ GeV/c with Lévy-Tsallis fit function

The new results $\sqrt{s} = 5.02$ TeV are consistent with the previous analyses at $\sqrt{s} = 7$ and 13 TeV:

- Mean p_T increases as a function of $<dN_{ch}/d\eta>_{|\eta|<0.5}$
- Average p_T is not dependent on the energy of the system
Baryon to meson ratio

Λ/K_S^0 enhancement present in all collision systems at the LHC:

- The effect is larger in larger colliding systems
- Smooth evolution with multiplicity when selecting specific p_T intervals
- Radial flow (QGP) in small systems?

p_T-integrated yield as a function of multiplicity obtained integrating the corrected spectra and the Lévy-Tsallis function down to 0 GeV/c

The $\langle dN/dy \rangle$ at $\sqrt{s} = 5.02$ TeV is in good agreement with the previous analyses results at $\sqrt{s} = 7$ and 13 TeV so, it is not dependent on the energy of the system.
The ratio shows an enhanced trend from low multiplicity pp to central Pb-Pb collisions for strange hadrons.

Smooth evolution among pp, p-Pb and Pb-Pb collisions.

Saturation is observed in (semi-) central Pb-Pb collisions.
p_T-integrated yield ratio to $(\pi^+ + \pi^-)$ over the p_T-integrated yield ratio to $(\pi^+ + \pi^-)$ in INEL>0

Enhancement proportional to the strangeness content of the hadron
The ϕ meson has hidden strangeness ($s\bar{s}$ total $S=0$)

The ϕ meson enhanced as a $1 < S < 2$ particle
PHYTHIA Lund string model:

- Confined color fields \rightarrow “string” with tension ~ 1 GeV/fm
- String breaking \rightarrow hadron formation
- MPI + Color Reconnection mechanisms at play in high energy hadronic interactions

DIPSY: partonic model

- implements color ropes in high density environment:
 - densely packed strings \rightarrow increase in string tension
 - Higher string tension \rightarrow more baryons and more flavours $\neq (u,d)$

![Diagram of quarks and gluons]
Model comparison: PYTHIA & DIPSY

PYTHIA underestimates strangeness production in pp and no progression with multiplicity is foreseen

DIPSY in qualitative agreement with measured ratios
Model comparison: EPOS LHC

EPOS LHC model implementing a double regime scenario

- **CORONA**: strings can hadronize as in the Lund approach
- **CORE**: hydrodynamic system, hadronization happens statistically at a common T_H

Hadron evolution explained by core-to-corona ratio changing in events with different final state multiplicity

EPOS LHC qualitatively describes enhancement pattern

NOTE: Does this imply QGP in small systems?
Model comparison: EPOS LHC

EPOS LHC model implementing a double regime scenario

- **CORONA**: strings can hadronize as in the Lund approach
- **CORE**: hydrodynamic system, hadronization happens statistically at a common T_H

Hadron evolution explained by core-to-corona ratio changing in events with different final state multiplicity

EPOS LHC qualitatively describes enhancement pattern

NOTE: Does this imply QGP in small systems?
Statistical hadronization thermal model \rightarrow particles spilling from an ideal hadron resonances gas in thermal and chemical equilibrium at chemical freeze-out stage.

Canonical Statistical Model (CSM):
- as multiplicity decreases, quantum numbers (Q,B,S) are forced to be conserved in smaller and smaller volumes
- It qualitatively describes Ω, Ξ ratio but there are issues for p and K
- It fails to describe ϕ

Statistical hadronization thermal model → particles spilling from an ideal hadron resonances gas in thermal and chemical equilibrium at chemical freeze-out stage

Canonical Statistical Model + γ_s (γ_sCSM):

- Introducing undersaturation parameter γ_s (incomplete equilibration of S) and fitting also T_{ch} and dV/dy in all systems
- Better agreement, but still problems with p, K and ϕ

Analysis of data collected during the LHC Run1 and Run 2 shows **strangeness enhancement**, which saturates at high-multiplicity.

Typical features traditionally observed in A-A collisions also present in pp and p-A collisions.

The steepness of the enhancement pattern is proportional to the **valence strange quark content** in the hadron.

Microscopic models

- **PYTHIA** shows strong disagreement with data.
- **DIPSY** and **EPOS** qualitatively describe the observed trend, but the quantitative description needs further refinements.

Macroscopic model

- **γ_sCSM** is capable of describing the hadron yields with roughly 15% relative accuracy.
- ϕ is still a weak point (and p and K).
Other new results:

ALICE Preliminary

$\phi \to \mu^+\mu^-$

$2.5 < y < 4, 2.5 < p_T < 3 \text{ GeV/c}$

- **PP, $\sqrt{s} = 13 \text{ TeV}$**
- **PYTHIA 8 (Monash 2013)**
 - HadronScattering
 - ColorRope

ALICE Preliminary

$\omega \to \mu^+\mu^-$

$2.5 < y < 4, 2.5 < p_T < 3 \text{ GeV/c}$

- **PP, $\sqrt{s} = 13 \text{ TeV}$**
- **PYTHIA 8 (Monash 2013)**
 - $y = x$

Particle Yield Ratios

<table>
<thead>
<tr>
<th>Particle</th>
<th>Yield Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>π^0/π^0</td>
<td>12.6</td>
</tr>
<tr>
<td>K^0/S</td>
<td>2.0</td>
</tr>
<tr>
<td>Σ^+/Λ</td>
<td>0.6</td>
</tr>
<tr>
<td>$\Lambda(1520)/\Lambda$</td>
<td>0.06</td>
</tr>
<tr>
<td>ϕ/K</td>
<td>0.05</td>
</tr>
</tbody>
</table>

ALICE, mult. dependent (V0M):

- Preliminary pp $\sqrt{s} = 5.02 \text{ TeV}$
- P-Pb $\sqrt{s} = 5.02 \text{ TeV}$

ALICE, mult. dependent (V0M):

- Preliminary pp $\sqrt{s} = 5.02 \text{ TeV}$
- P-Pb $\sqrt{s} = 5.02 \text{ TeV}$

Thank you.