

Light Meson Decays at BESIII

Yan Zhang(on behalf of BESIII Collaboration) University of Science and Technology of China State Key Laboratory of Particle Detection and Electronics

FPCP 2020, 8-12 June, A Toxa (Remotely) Conference on Flavor Physics and CP Violation 2020

FPCP 2020

Outline

Introduction

• η' Meson Decays

- $\checkmark \quad \text{Hadronic decays: } \eta' \to \pi^{+(0)} \pi^{-(0)} \eta, \ \eta' \to \pi^{+(0)} \pi^{-(0)} \pi^0, \eta' \to \pi^0 \pi^0 \pi^0 \pi^0 \pi^0$
- $\checkmark \quad \text{Radiative decays:} \ \eta' \to \gamma \pi^+ \pi^-, \eta' \to \gamma \gamma \eta$
- \checkmark η' branching fractions
- $a_0^0(980) f_0(980)$ Mixing

Summary

Beijing Electron Positron Collider II (BEPCII)

BESIII detector

Main Drift Chamber $\sigma_P/P = 0.5\% @ 1 \text{ GeV}$ $\sigma_{dE/dx} = 6\%$

Time of Flight $\sigma_T = 70 \text{ ps} \text{ (barrel two layers)}$ 110(60) ps (endcap)

Super Conducting Solenoid 1.0 T (2009) 0.9 T (2012)

Electromagnetic Calorimeter σ_{E}/\sqrt{E} = 2.5% @ 1 GeV

η/η' : a rich physics field

- test the predictions of CHPT
- study transition form factor
- test fundamental symmetries
- probe physics beyond the SM

η decay mode	Physics highlights	η´ decay mode	Physics highlights
$η \rightarrow \gamma \gamma \pi^{o}$	ChPT	$\eta' \rightarrow \pi \pi$	CPV
η→ γΒ	Leptopbobic dark boson	$\eta' \rightarrow \gamma \gamma$	Chiral anomaly
$η \rightarrow \pi^{o} \pi^{o} \pi^{o}$	m _u -m _d	$η' \rightarrow γππ$	Box anomaly
$η→ π^+π^-π^0$	m _u -m _d , CV	$\eta' \rightarrow \pi^+ \pi^- \pi^0$	m _u -m _d , CV
$η \rightarrow γ \gamma \gamma$	CPV	η΄ →I+I ⁻ π°	CV

η/η' from J/ ψ decays

• High production rate of light mesons in J/ψ decays

- η/η' from J/ψ radiative decays
 - $\begin{array}{ccc} \checkmark & 7.2 \times 10^6 & \eta' \\ \checkmark & 2.4 \times 10^6 & \eta \end{array}$
- η/η' from J/ψ hadronic decays (e.g. $J/\psi \to \phi \eta$)
 - $\checkmark 5 \times 10^5 \eta'$ $\checkmark 3 \times 10^5 \eta$

²⁰² Large data samples and unique opportunity to investigate the decays of η/η'

Dalitz plot analysis of $\eta' \rightarrow \eta \pi^+ \pi^-, \eta \pi^0 \pi^0$

- Remains a subject of effective ChPT.
- Explored by CLEO, VES, GAMS Collaboration but with limited statistics.
- $\eta' \rightarrow \eta \pi^+ \pi^-$ is studied based on 225M J/ ψ at BESIII [PRD 83,012003(2011)].
- A cusp due to $\pi^+\pi^-$ mass threshold for the Dalitz plot of $\eta' \rightarrow \eta \pi^0 \pi^0$.
- For the charged decay mode

$$X = rac{\sqrt{3} \left(T_{\pi^+} - T_{\pi^-}
ight)}{Q}, Y = rac{m_\eta + 2m_\pi}{m_\pi} rac{T_\eta}{Q} - 1$$

 T_{π} and T_{η} denote the kinetic energies of π and η in the η' rest frame, $Q = m_{\eta'} - m_{\eta} - 2m_{\pi}$.

• For the neutral decay mode

$$X = rac{\sqrt{3} \left(\, T_{\pi^0} - \, T_{\pi^0}
ight)}{Q}$$

general representation

$$M(X,Y)|^{2} = N(1 + aY + bY^{2} + cX + dX^{2} + \cdots)$$

• linear representation

$$|M(X,Y)|^2 = N\left(|1+lpha Y|^2 + cX + dX^2 + \cdots\right)$$

Here, a,b,c,d are free parameters, α is a complex number, $a = 2\text{Re}(\alpha)$, $b = \text{Re}(\alpha)^2 + \text{Im}(\alpha)^2$.

Dalitz plot analysis of $\eta' \rightarrow \eta \pi^+ \pi^-$

• The linear representation is less compatible with the data.

η'	\rightarrow	$\eta\pi^{-}$	π
-		-	

Parameter	EFT [5]	Large N _C [7]	RChT [7]	VES [10]	This work
a	-0.116(11)	-0.098(48)	(fixed)	-0.127(18)	-0.056(4)(2)
b	-0.042(34)	-0.050(1)	-0.033(1)	-0.106(32)	-0.049(6)(6)
С				+0.015(18)	0.0027(24)(18)
d	+0.010(19)	-0.092(8)	-0.072(1)	-0.082(19)	-0.063(4)(3)
$\Re(\alpha)$				-0.072(14)	-0.034(2)(2)
$\Im(\alpha)$				0.000(100)	0.000(19)(1)
С				+0.020(19)	0.0027(24)(15)
d		•••		-0.066(34)	-0.053(4)(4)

Dalitz plot analysis of $\eta' \rightarrow \eta \pi^0 \pi^0$ PRD 97, 012003 (2018)

◆ The linear representation is less compatible with the data.

		$\eta' o \eta \pi^0 \pi^0$	
Parameter	EFT [5]	GAMS-4π [12]	This work
a	-0.127(9)	-0.067(16)	-0.087(9)(6)
b	-0.049(36)	-0.064(29)	-0.073(14)(5)
С			
d	+0.011(21)	-0.067(20)	-0.074(9)(4)
$\Re(\alpha)$		-0.042(8)	-0.054(4)(1)
$\Im(\alpha)$		0.000(70)	0.000(38)(2)
С			
d		-0.054(19)	-0.061(9)(5)

Dalitz plot analysis of $\eta' \rightarrow \eta \pi^0 \pi^0$

◆ Search for cusp effect:

FSI: A cusp effect (more than 8%) on $\pi^0 \pi^0$ mass spectrum below the $\pi^+ \pi^-$ mass threshold[EPJC62, 511 (2009)]

No evidence of a cusp effect with current statistics.

Amplitude analysis of $\eta' \rightarrow \pi^{+(0)} \pi^{-(0)} \pi^0$

$$r_{\pm} = \frac{B(\eta' \to \pi^{+} \pi^{-} \pi^{0})}{B(\eta' \to \pi^{+} \pi^{-} \eta)}$$
$$r_{0} = \frac{B(\eta' \to \pi^{0} \pi^{0} \pi^{0})}{B(\eta' \to \pi^{0} \pi^{0} \eta)}$$

• Using ChPT, large P-wave contribution of $\eta' \rightarrow$

 $\rho^{\pm}\pi^{\mp}$ is predicted [Eur. Phys .J. A 26, 383(2005)]

Amplitude analysis of $\eta' \rightarrow \pi^{+(0)} \pi^{-(0)} \pi^{0}_{\text{PRL 118, 012001 (2017)}}$

Search for rare decay $\eta' \rightarrow \pi^0 \pi^0 \pi^0 \pi^0$

PRD 101, 032001 (2020)

- Highly suppressed decay because of the S-wave CP-violation.
- Higher-order contributions, involving a D-wave pion loop or the production of two tensor mesons provide a CP-conserving route through which the decay can occur [PRD 85, 014014 (2012)]

This limit is approximately a factor of six smaller than the previous most stringent result. [Mod. Phys. Lett. A 29, 1450213 (2014)]

FPCP 2020

Study of $\eta' \rightarrow \gamma \pi^+ \pi^-$ decay dynamics

- In VMD model, this process is dominated by $\eta' \rightarrow \gamma \rho$
- The discrepancy attributed to the Wess-Zumino-Witten anomaly in the ChPT, Known as the box anomaly [PLB 37, 95 (1971), NPB223, 422 (1983)]
- Recently a model-independent approach based on ChPT are proposed. [PLB 707, 184 (2012)]
- Studied by several experiments, but no consistent picture due to limited statistics
 - ρ mass shift or not?
 - Box anomaly or not?

The dipion mass dependent differential rate :

 $[d\Gamma/dM(\pi^+\pi^-)] = [k_{\gamma}^3 q_{\pi}^3(s)/48\pi^3] |\mathcal{A}|^2,$

$$k_{\gamma} = (m_{\eta'}^2 - s)/(2m_{\eta'}), \ q_{\pi}(s) = \sqrt{s - 4m_{\pi}^2}/2$$

Study of $\eta' \rightarrow \gamma \pi^+ \pi^-$ decay dynamics

- Besides the $\rho(770)$, the ω contribution is needed.
- $\rho(770)$ ω cannot describe data well.
- Extra contribution of box-anomaly or ρ(1450), or both of them is necessary.

Search for $\eta' \rightarrow \gamma \gamma \eta$

PRD 100, 052015 (2019)

- Within the frame work of the linear σ model and the VMD model, the BF of $\eta' \rightarrow \gamma \gamma \eta$ is predicted to be 2. 0 × 10⁻⁴.
- GAMS-4π reported the upper limit of the BF < 8.0 × 10⁻⁴ at the 90% C.L. [Phys. Atom. Nucl. 78, 1043 (2015)]

Search for $\eta' \rightarrow \gamma \gamma \eta$ in the J/ψ radiative decay

Significance: 2.6 σ BF: (8.25 ± 3.41 ± 0.72)×10⁻⁵

Upper limit of BF: <1.33 \times 10⁻⁴ at the 90% C.L.

The obtained result is in tension with theoretical prediction.

Measurement of the BFs of η' decays

- ◆ There are only the relative measurements of BFs of η' decays from experiments. • Difficult to tag the inclusive decays in $J/\psi \rightarrow \gamma \eta'$ because of the poor energy resolution of radiative photon
- Developed a method to reconstruct radiative photon using photon conversions to $e^+e^$ pairs.
- **•** Resolution of the radiative photon could be improved by a factor of 3.

 BF for each η' exclusive decay is obtained with

First direct measure of absolute BFs for five η' modes.

$a_0^0(980) - f_0(980)$ Mixing

- $a_0^0(980) f_0(980)$ still controversial about their nature.
- In 1970s, the mixing mechanism was firstly proposed. [PLB 88, 367 (1979)]
- Theorist proposed to directly measure $a_0^0(980) f_0(980)$ mixing via:

 $J/\psi \rightarrow \phi a_0^0(980) \rightarrow \phi \eta \pi^0$ $\chi_{c1} \rightarrow \pi^0 f_0(980) \rightarrow \pi^0 \pi^+ \pi^-$

- [Wu, Zhao, Zou, PRD 75, 114012 (2007), PRD 78, 074017 (2008)]
- Measured at BESIII based on 225M J/ψ and 108M $\psi(2S)$, significance < 5 σ . [PRD 83, 032003 (2011)]

• $f_0(980) \rightarrow a_0^0(980)$ Mixing

• $a_0^0(980) \rightarrow f_0(980)$ Mixing

$f_0(980) \rightarrow a_0^0(980)$ Mixing

- Constructed by $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^+ \pi^- \pi^0$
- Interference between EM and mixing signal
- Two solutions are found, significance of $f_0(980) \rightarrow a_0^0(980)$ is 7.4 σ

$a_0^0(980) \to f_0(980)$ Mixing

- Very narrow peak of $f_0(980)$
- EM contribution too weak ,can be negligible
- Interference is negligible
- Significance of $a_0^0(980) \rightarrow f_0(980)$ is 5.5 σ

$$\xi_{fa} = \frac{\mathcal{B}[J/\psi \to \phi f_0(980) \to \phi a_0^0(980) \to \phi \eta \pi^0]}{\mathcal{B}[J/\psi \to \phi f_0(980) \to \phi \pi \pi]},$$

$$\xi_{af} = \frac{\mathcal{B}[\chi_{c1} \to \pi^0 a_0^0(980) \to \pi^0 f_0(980) \to \pi^0 \pi^+ \pi^-]}{\mathcal{B}[\chi_{c1} \to \pi^0 a_0^0(980) \to \pi^0 \pi^0 n]}$$

The mixing intensities:

	$f_0(980)$ -		
Channel	Solution I	Solution II	$a_0^0(980) \to f_0(980)$
\mathcal{B} (mixing) (10 ⁻⁶)	$3.18 \pm 0.51 \pm 0.38 \pm 0.28$	$1.31 \pm 0.41 \pm 0.39 \pm 0.43$	$0.35 \pm 0.06 \pm 0.03 \pm 0.06$
${\cal B}$ (EM) (10 ⁻⁶)	$3.25 \pm 1.08 \pm 1.08 \pm 1.12$	$2.62 \pm 1.02 \pm 1.13 \pm 0.48$	
${\cal B}$ (total) (10 ⁻⁶)	$4.93 \pm 1.01 \pm 0.96 \pm 1.09$	$4.37 \pm 0.97 \pm 0.94 \pm 0.06$	
ξ (%)	$0.99 \pm 0.16 \pm 0.30 \pm 0.09$	$0.41 \pm 0.13 \pm 0.17 \pm 0.13$	$0.40 \pm 0.07 \pm 0.14 \pm 0.07$

Summary (I)

- $> \eta'$ meson decays, ω meson decay and $a_0^0(980) f_0(980)$ mixing are reviewed
- Dalitz plot analysis of $\eta' \rightarrow \eta \pi^+ \pi^-$, $\eta \pi^0 \pi^0$: the linear representation is less compatible with the data.
- ♦ Amplitude analysis of $\eta' \to \pi^{+(0)}\pi^{-(0)}\pi^0$: Significant P-wave $\eta' \to \rho^{\pm}\pi^{\mp}$ is observed for the first time.
- Search for $\eta' \to \pi^0 \pi^0 \pi^0 \pi^0$: the most stringent upper limit.
- Precision study of the decay dynamics of $\gamma \pi^+ \pi^-$: need extra contribution besides $\rho(770) \omega$.
- Search for $\eta' \rightarrow \gamma \gamma \eta$: the result is in tension with theoretical prediction.
- First direct measurement of absolute BFs for η' five modes.

Summary (II)

- ◆ First observation of $a_0^0(980) f_0(980)$ mixing: the mixing signal with 7.4 σ and 5.5 σ for the first time, the constraint regions on $g_{a_0K^+K^-}$ and $g_{f_0K^+K^-}$ are roughly obtained by the significance test.
- $> J/\psi$ decay is an unique place to study light meson decays.
- > BESIII: 1.3 billion + 8.7 billion (10 billion in total) J/ψ events
 - The large data sample allows to study light mesons with the unprecedented statistics.
 - More interesting results are expected.

Thanks for your attention

- $\eta' \rightarrow \pi^+\pi^-\eta$
- $\eta/\eta' \rightarrow \pi^+\pi^-, \pi^0\pi^0$
- $\eta' \rightarrow \pi^+ \pi^- \pi^0$, $\pi^0 \pi^0 \pi^0$
- * $\eta/\eta' \rightarrow invisible$
- $\eta/\eta' \rightarrow \pi^+ e \nu$
- $\eta' \rightarrow \Im(\pi^+\pi^-)$
- $\eta' \rightarrow 2(\pi^+\pi^-), \pi^+\pi^-\pi^0\pi^0$
- $\eta' \rightarrow \gamma e^+ e^-$
- $\eta \rightarrow \pi^{+}\pi^{-}\pi^{o}$, $\eta/\eta' \rightarrow \pi^{o}\pi^{o}\pi^{o}$
- η' → ωe⁺e⁻
- $\eta' \rightarrow K\pi$
- η'→ρπ
- $\eta' \rightarrow \gamma \gamma \pi^o$
- $\eta' \rightarrow \gamma \pi^+ \pi^-$
- $\eta' \rightarrow \eta \pi^+ \pi^-, \eta \pi^0 \pi^0$
- η^{\prime} branching fractions
- $\eta' \rightarrow \gamma \gamma \eta$
- $\eta'_{2020}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$

Phys. Rev. D 83, 012003 (2011) Phys. Rev. D 84, 032006 (2011) Phys. Rev. Lett. 108, 182001(2012) Phys. Rev. D 87, 012009 (2013) Phys. Rev. D 87, 032006 (2013) Phys. Rev. D 88, 091502 (2013) Phys. Rev. Lett. 112, 251801 (2014) Phys. Rev. D 92, 012001 (2015) Phys. Rev. D 92, 012014 (2015) Phys. Rev. D 92, 051101 (2015) Phys. Rev. D 93, 072008 (2016) Phys. Rev. Lett. 118, 012001(2017) Phys. Rev. D 96, 012005 (2017) Phys. Rev. Lett. 120, 242003 (2018) Phys. Rev. D 97, 012003 (2018) Phys. Rev. Lett. 122, 142002 (2019) Phys.Rev.D 100, 052015 (2019) Phys.Rev.D 1010-032001 (2020)

BESIII Collaboration

28