

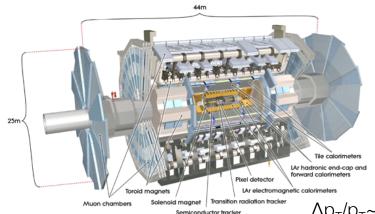
ATLAS results on Heavy Flavour production and decay - including rare processes -

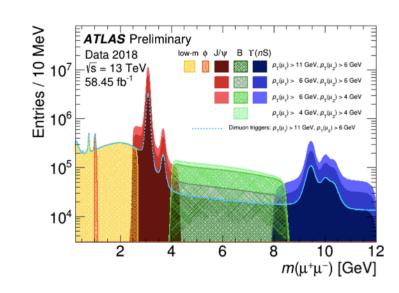
Paolo IENGO
(CERN)
On behalf on the ATLAS Collaboration

Outline

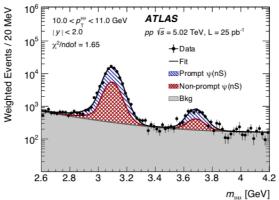
- Introduction
 - General features on Heavy Flavor Physics with ATLAS
- Quarkonia production
 - Associated production of J/ψ and W[±]
- Open Beauty
 - Relative B_c/B⁺ production measurement
- Rare decays
 - $\circ B^{0}_{(s)} \to \mu^{+}\mu^{-}$

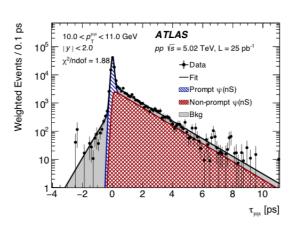
Selected recent results among the many published by the Collaborations


Quarkonia and Heavy Flavour at ATLAS


spectrum

Di-u invariant mass

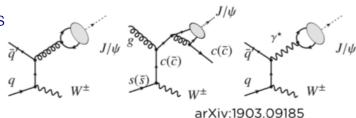

- Based on low p_T muon trigger and track reconstruction in the Inner Detector
- Wide regions in rapidity and p_T
- pp, pA; AA collisions
- Wide √s range: 5.02, 7, 8, 13 TeV

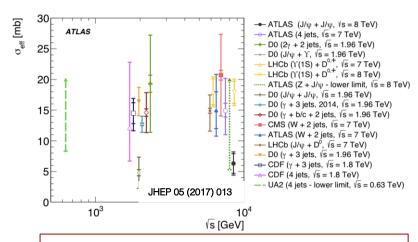


 $\Delta p_T/p_T{\sim}O(1{\text -}5\%)$ for low-momentum tracks

- HF: main variables of 2µ pair
 - o $m(\mu^+\mu^-)$
 - \circ $\tau(\mu^+\mu^-)$
 - → Prompt vs Non-Prompt(B decays in flight) separation

Quarkonia associated production



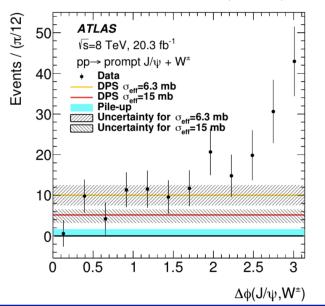


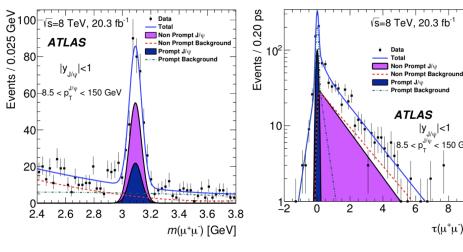
- Investigation of processes not well known/described
 - Production mechanism of charmonium in hadron collisions
 - Relative contribution of Color Singlet (CS) and Octet (CO)
 - Contribution of Single Parton (SPS) vs Double Parton Scattering (DPS). Cross-section sensitive to spatial distribution of gluons in the proton
 - DPS vs SPS undistinguishable on event-by-event basis.
 Discriminating angular correlation: Δy and Δφ

Many ATLAS studies on quarkonia associated production. Here: new result on prompt J/ψ+W[±] at 8 TeV

- Probability: $P_{W+J/\psi} = \sigma_{J/\psi}/\sigma_{eff}$
- Value of σ_{eff} unknown \rightarrow use values from previous ATLAS measurements
 - o $\sigma_{eff} = 15 \pm 3 \text{ (stat)}^{+5} \text{ (syst) mb from W+2jets}$
 - o $\sigma_{eff} = 6.3 \pm 1.6 \text{ (stat)} \pm 1.0 \text{ (syst)} \text{ mb} \text{ from prompt 2-J/}\psi$

Summary of old experimental results $\sigma_{\text{eff}} \mbox{ generally lower from prompt di-J/ψ and di-Y} \\ \mbox{ wrt final states with vector bosons}$



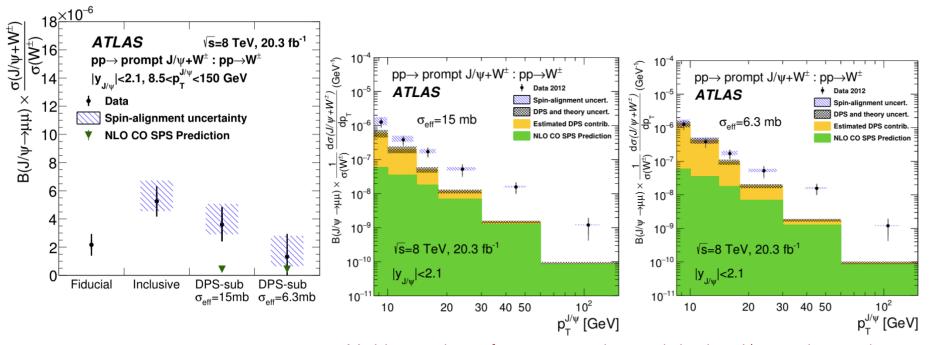

 $8.5 < p_{_{T}}^{J/\psi} < 150 \text{ GeV}$

 $\tau(\mu^+\mu^-)[ps]$

- Dataset: 20.3 fb⁻¹ @ 8 TeV
 - Single high-pT trigger
 - $J/\psi \rightarrow \mu^+\mu^-$ and $W^{\pm} \rightarrow \mu^{\pm}\nu_{\mu}$
 - Two pseudo-rapidity intervals
 - Fit to m($\mu\mu$) and $\tau(\mu\mu) \rightarrow$ prompt J/ ψ
 - Systematic uncertainty dominated by vertex separation between J/ψ and W
- Prompt signal yields:
 - $93\pm14(stat)$ for $|y(J/\psi)|<1$
 - 102 ± 17 (stat) for $1<|y(J/\psi)|<2.1$

Di-µ invariant mass and pseudo-proper decay time

- Contribution from both DPS and SPS (peak at $\Delta \phi = \pi$)
- DPS contribution to inclusive signal yield
 - \circ (31⁺⁹₋₁₂)% ($\sigma_{eff} = 15 \text{ mb}$)
 - $(75\pm23)\%$ $(\sigma_{eff} = 6.3 \text{ mb})$
- Both values of σ_{eff} consistent with data at low $\Delta \Phi$

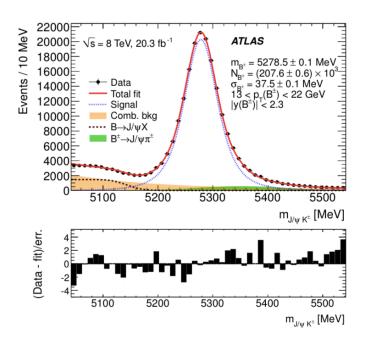


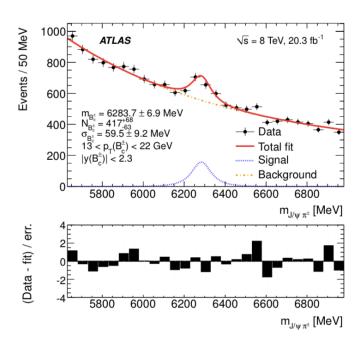
Production cross-section ratio

 $R_{J/\psi}^{\rm fid} = \frac{\sigma_{\rm fid}(pp \to J/\psi + W^{\pm})}{\sigma(pp \to W^{\pm})} \cdot \mathcal{B}(J/\psi \to \mu\mu)$

- In the J/ψ fiducial region
- Inclusive, after correction for J/ψ acceptance
- o DPS-subtracted, can be compared with CO only theoretical predictions
 - ightarrow agreement when lower σ_{eff} is used

Neither value of σ_{eff} correctly models the J/ ψ p_T dependence probably due to the lack of CS contributions

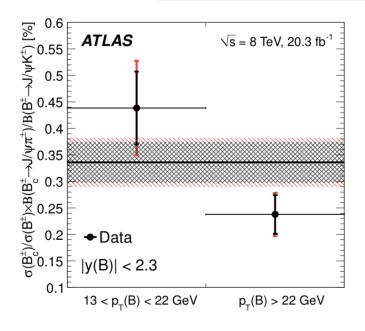

Heavy Flavor: Open Beauty

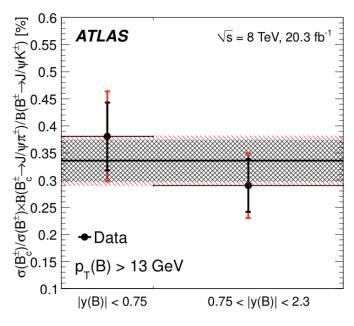


Relative B_c/B⁺ production measurement

- B_c weakly decaying particle made of two heavy quarks
 - Unique probe for heavy quark dynamics
- Measure the ratio: $\frac{\sigma(B_c) \cdot \mathcal{B}(B_c \to J/\psi \pi^+)}{\sigma(B^+) \cdot \mathcal{B}(B^+ \to J/\psi K^+)}$
 - o common systematic uncertainties mostly cancels out

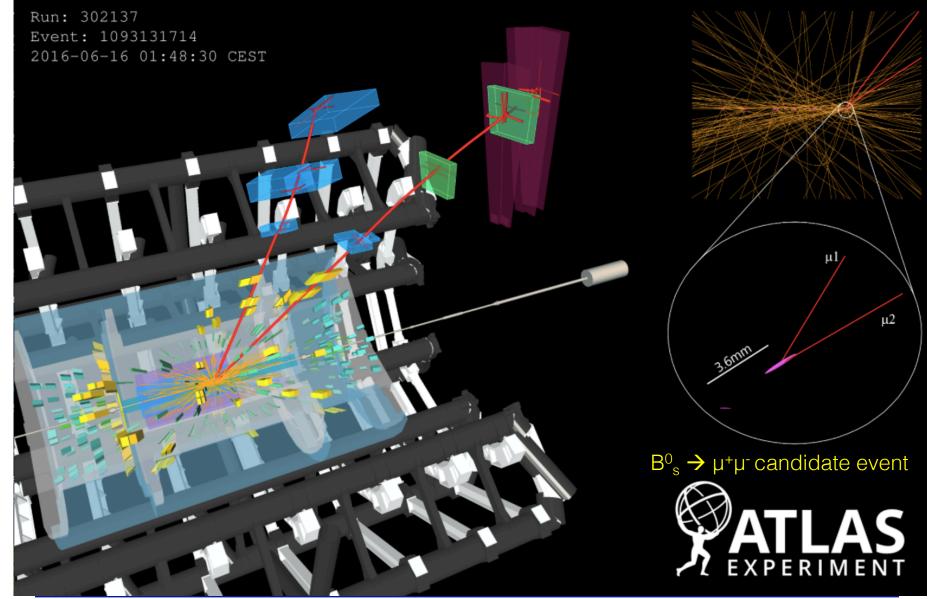
- Dataset: 20.3 fb⁻¹ (2012) @ 8 TeV p-p collisions
- $2x2 (p_T(B),|y(B)|)$ analysis bins




Relative B_c/B⁺ production measurement

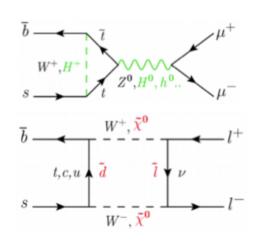
Results

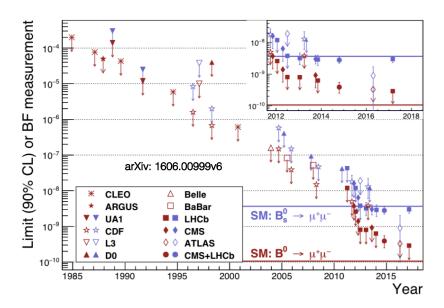
Analysis bin	$\sigma(B_c^{\pm})/\sigma(B^{\pm}) \times \mathcal{B}(B_c^{\pm} \to J/\psi \pi^{\pm})/\mathcal{B}(B^{\pm} \to J/\psi K^{\pm})$
$p_{\rm T}(B) > 13 \ {\rm GeV}, \ y(B) < 2.3$	$(0.34 \pm 0.04_{\rm stat} \pm 0.02_{\rm syst} \pm 0.01_{\rm lifetime})\%$
$13 < p_{\mathrm{T}}(B) < 22 \text{ GeV}, y(B) < 2.3$	$(0.44 \pm 0.07_{\rm stat} \pm 0.04_{\rm syst} \pm 0.01_{\rm lifetime})\%$
$p_{\rm T}(B) > 22 \text{ GeV}, y(B) < 2.3$	$(0.24 \pm 0.04_{\rm stat} \pm 0.01_{\rm syst} \pm 0.01_{\rm lifetime})\%$
$p_{\rm T}(B) > 13 \text{ GeV}, y(B) < 0.75$	$(0.38 \pm 0.06_{\rm stat} \pm 0.04_{\rm syst} \pm 0.01_{\rm lifetime})\%$
$p_{\rm T}(B) > 13 \text{ GeV}, 0.75 < y(B) < 2.3$	$(0.29 \pm 0.05_{\rm stat} \pm 0.02_{\rm syst} \pm 0.01_{\rm lifetime})\%$



- Production ratio (in fiducial region): (0.34±0.04^{stst}±0.02^{syst}±0.01^{lifetime})%
 - Lower than the LHCb result (more forward and lower-p_⊤ fiducial phase-space)
 - o Consistent with the CMS result in a similar (but not identical) phase-space
- Production decreases faster with p_T for B_c than B+; No evident rapidity dependence

Rare $B^0_{(s)} \rightarrow \mu^+\mu^-$ decay

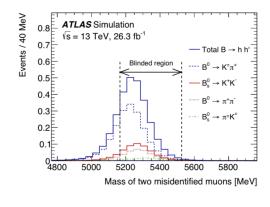




$B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$

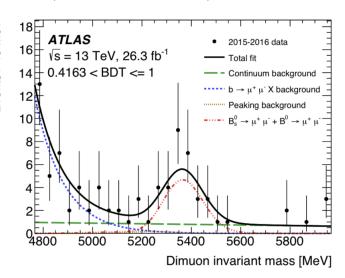
- $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$:
 - Loops and helicity suppressed
 - Precise theoretical predictions
 - Sensitive to NP via loop diagrams
- Experimental limits/measurements constantly improving Approaching SM predictions with LHC experiments

- ATLAS Run1 results
 - o BR(B⁰_s $\rightarrow \mu^{+}\mu^{-}$) = (0.9^{+1.1}_{-0.8}) x 10⁻⁹
 - $BR(B^0 → μ^+μ^-) < 4.2x10^{-10}$ at 95% CL
 - Compatible with SM at ~2σ
- New ATLAS measurement based on 26.3 fb⁻¹ p-p collision data at 13 TeV from Run2 (2015+2016)
 - + combination with Run1


$B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$

 $m_{J/\psi K^{+}}$ [MeV]

$$\mathcal{B}(B_{(s)}^{0} \to \mu^{+}\mu^{-}) =$$


$$\frac{N_{d(s)}}{\varepsilon_{\mu^{+}\mu^{-}}} \times \left[\mathcal{B}(B^{+} \to J/\psi K^{+}) \times \mathcal{B}(J/\psi \to \mu^{+}\mu^{-}) \right] \frac{\varepsilon_{J/\psi K^{+}}}{N_{J/\psi K^{+}}} \times \frac{f_{u}}{f_{d(s)}}$$

- B+ \rightarrow J/ ψ K+ reference channel
- Blinded analyses
- BG main components
 - Combinatorial from semi-leptonic B hadrons
 - Partially-reconstructed B decays with two μ: B → μμh
 - o B decays to h misidentified as μ : B \rightarrow hh, B \rightarrow hv μ
- Unbinned ML fit to m_{µµ} in 4 BDT bins
- B⁰_s and B⁰ peaks overlap (limited resolution)
 → statistically separated in the fit procedure
- Extracted yields:

$$\circ$$
 N(B⁰_s) =80±22 N(B⁰) =-12 ±20

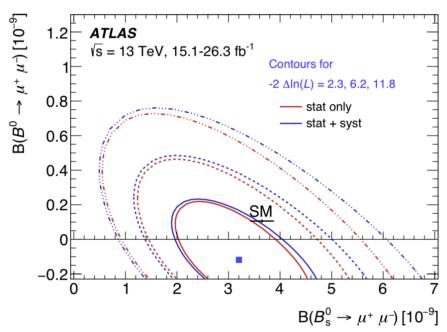
- Consistent with SM expectations:
 - \circ N(B⁰_s) = 91 N(B⁰) = 10

 \sqrt{s} = 13 TeV, 15.1 fb⁻¹

40000 30000 20000

10000

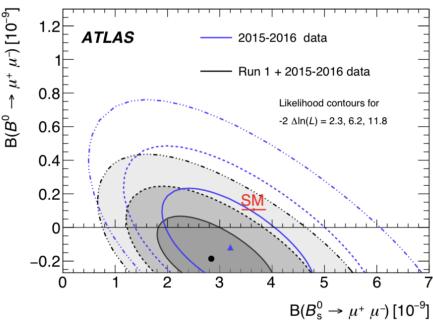
Pull


$B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$: Results

Run2 only

o BR(B⁰_s
$$\rightarrow \mu^{+}\mu^{-}$$
) = (3.2 +1.1 _{-1.0}) x 10⁻⁹

o BR(B⁰ →
$$\mu^+\mu^-$$
) < 4.3 x 10⁻¹⁰ 95% C.L.


Compatible with SM at 1σ level

Experiment	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$	$\mathcal{B}(B^0\to\mu^+\mu^-)$	
ATLAS	$2.8^{+0.8}_{-0.7} \times^{-9}$	$(-1.9 \pm 1.6) \times^{-10}$,
CMS	$(2.9^{+0.7}_{-0.6} \pm (0.2)) \times^{-9}$	$0.8^{+1.4}_{-1.3} \times^{-10}$	
LHCb	$3.0^{+0.7}_{-0.6} \times^{-9}$	$1.5^{+1.1}_{-1.0} \times^{-10}$	

Combination with Run1 ATLAS results

o BR(
$$B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$$
) = (2.8 $^{+0.8}_{-0.7}$) x 10⁻⁹

○ BR(B⁰
$$\rightarrow \mu^+\mu^-$$
) < 2.1 x 10⁻¹⁰ 95% C.L.

- Compatible with SM at 2.4σ level
 - SM predictions (JHEP 10 (2019) 232):

o BR(B⁰_s
$$\rightarrow \mu^+\mu^-$$
) = (3.44±0.14) x 10⁻⁹

- BR(B⁰_s $\rightarrow \mu^{+}\mu^{-}$) = (1.05±0.05) x 10⁻¹⁰
- Combination of the 3 exp ongoing

Summary

ATLAS has a rich physics program for studies of heavy flavour physics

Selection of recent results on:

- Associated production of J/ψ and W[±]
 - Production cross-section ratio DPS-subtracted in agreement with NLO
 - o Disagreement with models on J/ψ p_T dependence: CS contribution?
- Relative B_c/B+ production measurement
 - Production ratio (in fiducial region): (0.34±0.04^{stst}±0.02^{syst}±0.01^{lifetime})%
 Consistent with measurements from CMS
- $B_{(s)}^0 \rightarrow \mu^+ \mu^-$ rare decay new results
 - o BR(B⁰_s $\rightarrow \mu^{+}\mu^{-}$) = (2.8 $^{+0.8}$ $_{-0.7}$) x 10⁻⁹
 - BR(B⁰ $\rightarrow \mu^+\mu^-$) < 2.1 x 10⁻¹⁰ at 95% C.L.

Many more studies ongoing; more results to come in the next months

Additional Material

J/ψ selection				
$2.4 < m(\mu^+\mu^-) < 3.8 \text{ GeV}$				
$8.5 < p_{\rm T}^{J/\psi} < 150 \text{ GeV}, y_{J/\psi} < 2.1$ $p_{\rm T}^{\mu_1} > 4 \text{ GeV}, \eta^{\mu_1} < 2.5$				
$p_{\rm T}^{\mu_1} > 4 \text{ GeV}, \eta^{\mu_1} < 2.5$				
(either $p_T^{\mu_2} > 2.5 \text{ GeV}$, $1.3 \le \eta^{\mu_2} < 2.5$)				
$\left\{ \text{ or } p_{\text{T}}^{\mu_2} > 3.5 \text{ GeV}, \eta^{\mu_2} < 1.3 \right\}$				

Source of Uncertainty	Uncertainty [%]	
	$ y_{J/\psi} < 1$	$1 < y_{J/\psi} < 2.1$
J/ψ mass fit	8.7	4.9
Vertex separation	12	15
$\mu_{J/\psi}$ efficiency	2.0	1.6
Pile-up	1.1	1.4
$J/\psi + Z$ and $J/\psi + W^{\pm}(\to \tau^{\pm} \nu)$	3.5	4.8
Efficiency correction	2.3	2.3

$p_{\mathrm{T}}^{J/\psi}$ [GeV]	Inclusive prompt	ratio [×10	⁻⁷ / GeV]		$PS \left[\times 10^{-7} / \text{ GeV} \right]$
	value \pm (stat) \pm	= (syst) ±	(spin)	$\sigma_{\text{eff}} = 15^{+5.8}_{-4.2} \text{mb}$	$\sigma_{\rm eff} = 6.3 \pm 1.9 \mathrm{mb}$
(8.5, 10)	12.6 ± 3.3	± 2.4	+5.0 -2.4	$5.3^{+1.5}_{-2.1}$	12.7 ± 3.8
(10, 14)	3.8 ± 1.0	± 0.8	$^{+1.2}_{-0.5}$	$1.64^{+0.46}_{-0.64}$	3.9 ± 1.2
(14, 18)	1.70 ± 0.50	± 0.21	$^{+0.35}_{-0.17}$	$0.33^{+0.09}_{-0.13}$	0.77 ± 0.23
(18, 30)	0.52 ± 0.17	± 0.12	$^{+0.08}_{-0.04}$	$0.048^{+0.013}_{-0.019}$	0.114 ± 0.034
(30, 60)	0.156 ± 0.054	$\pm~0.021$	+0.013 -0.006	$0.0021^{+0.0006}_{-0.0008}$	0.0049 ± 0.0015
(60, 150)	0.012 ± 0.006	$\pm~0.005$	+0.0005 -0.0002	$0.000032^{+0.000009}_{-0.000012}$	0.000076 ± 0.000023

Relative B_c/B⁺ production measurement

Analysis bin	Fitted mass of the B^{\pm} [MeV]	Number of the B^{\pm} candidates	σ_m of the B^{\pm} [MeV]
$p_{\rm T}(B) > 13 \text{ GeV}, y(B) < 2.3$	5278.6 ± 0.1	$(398.3 \pm 0.8) \times 10^3$	37.5 ± 0.1
$13 < p_{\rm T}(B) < 22 \text{ GeV}, y(B) < 2.3$	5278.5 ± 0.1	$(207.6 \pm 0.6) \times 10^3$	37.5 ± 0.1
$p_{\rm T}(B) > 22 \text{ GeV}, y(B) < 2.3$	5278.8 ± 0.1	$(190.9 \pm 0.6) \times 10^3$	38.1 ± 0.1
$p_{\rm T}(B) > 13 \text{ GeV}, y(B) < 0.75$	5278.4 ± 0.1	$(147.9 \pm 0.5) \times 10^3$	26.6 ± 0.1
$p_{\rm T}(B) > 13 \text{ GeV}, 0.75 < y(B) < 2.3$	5279.1 ± 0.1	$(248.8 \pm 0.6) \times 10^3$	45.9 ± 0.1

Analysis bin	Fitted mass of the B_c^{\pm} [MeV]	Number of the B_c^{\pm} candidates	σ_m of the B_c^{\pm} [MeV]
$p_{\rm T}(B) > 13 \text{ GeV}, y(B) < 2.3$	6281.0 ± 4.5	798 ⁺⁹² ₋₈₄	52.4 ± 5.6
$13 < p_{\mathrm{T}}(B) < 22 \text{ GeV}, y(B) < 2.3$	6283.7 ± 6.9	417^{+68}_{-63}	59.5 ± 9.2
$p_{\rm T}(B) > 22 {\rm GeV}, y(B) < 2.3$	6278.4 ± 5.7	363^{+59}_{-56}	45.7 ± 6.7
$p_{\rm T}(B) > 13 \text{ GeV}, y(B) < 0.75$	6275.1 ± 1.7	319^{+57}_{-52}	31.5 ± 5.7
$p_{\rm T}(B) > 13 \text{ GeV}, 0.75 < y(B) < 2.3$	6275.2 ± 9.0	454 ⁺⁷¹ ₋₆₆	67.1 ± 10.4

Source of uncertainty	Uncertainty value			
	B_C^{\pm}		B^\pm	
	y < 0.75	0.75 < y < 2.3	y < 0.75	0.75 < y < 2.3
Signal model of the fit	2.5%	2.8%	0.1%	0.2%
Cabibbo-suppressed decay	2.4%	2.4%	0.5%	0.5%
modeling				
Background model of the fit	2.8%	1.3%	0.2%	0.2%
Trigger effects and recon-	1.1%	1.0%	1.2%	1.1%
struction effects				
B-meson lifetime uncer-	1.0%	0.9%	< 0.1%	< 0.1%
tainty				

BDT input variables

Variable	Description
p_{T}^{B}	Magnitude of the <i>B</i> candidate transverse momentum $\overrightarrow{p_{\Gamma}}^{B}$.
$\chi^2_{\text{PV,DV }xy}$	Compatibility of the separation $\overrightarrow{\Delta x}$ between production (i.e. associated PV) and decay (DV) vertices in the transverse projection: $\overrightarrow{\Delta x}_T \cdot \Sigma_{\overrightarrow{\Delta x}_T}^{-1} \cdot \overrightarrow{\Delta x}_T$, where $\Sigma_{\overrightarrow{\Delta x}_T}$ is the covariance matrix.
$\Delta R_{\mathrm{flight}}$	Three-dimensional angular distance between \overrightarrow{p}^B and $\overrightarrow{\Delta x}$: $\sqrt{\alpha_{2D}^2 + (\Delta \eta)^2}$
$ \alpha_{\mathrm{2D}} $	Absolute value of the angle in the transverse plane between $\overrightarrow{p_T}^B$ and $\overrightarrow{\Delta x_T}$.
L_{xy}	Projection of $\overrightarrow{\Delta x_T}$ along the direction of \overrightarrow{p}_T^B : $(\overrightarrow{\Delta x_T} \cdot \overrightarrow{p_T}^B)/ \overrightarrow{p_T}^B $.
IP_B^{3D}	Three-dimensional impact parameter of the B candidate to the associated PV.
$\mathrm{DOCA}_{\mu\mu}$	Distance of closest approach (DOCA) of the two tracks forming the <i>B</i> candidate (three-dimensional).
$\Delta \phi_{\mu\mu}$	Azimuthal angle between the momenta of the two tracks forming the B candidate.
$ d_0 ^{\text{max}}$ -sig.	Significance of the larger absolute value of the impact parameters to the PV of the tracks forming the B candidate, in the transverse plane.
$ d_0 ^{\min}$ -sig.	Significance of the smaller absolute value of the impact parameters to the PV of the tracks forming the B candidate, in the transverse plane.
$P_{ m L}^{ m min}$	The smaller of the projected values of the muon momenta along $\overrightarrow{p_T}^B$.
I _{0.7}	Isolation variable defined as ratio of $ \overrightarrow{p_T}^B $ to the sum of $ \overrightarrow{p_T}^B $ and the transverse momenta of all additional tracks contained within a cone of size $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.7$ around the <i>B</i> direction. Only tracks matched to the same PV as the <i>B</i> candidate are included in the sum.
DOCA _{xtrk}	DOCA of the closest additional track to the decay vertex of the B candidate. Only tracks matched to the same PV as the B candidate are considered.
$N_{ m xtrk}^{ m close}$	Number of additional tracks compatible with the decay vertex (DV) of the <i>B</i> candidate with $\ln(\chi^2_{\text{xtrk},DV}) < 1$. Only tracks matched to the same PV as the <i>B</i> candidate are considered.
$\chi^2_{\mu, \mathrm{xPV}}$	Minimum χ^2 for the compatibility of a muon in the <i>B</i> candidate with any PV reconstructed in the event.

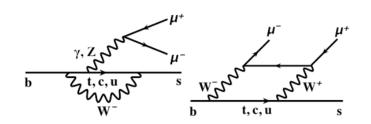
Source	Contribution [%]
Statistical	0.8
BDT input variables	3.2
Kaon tracking efficiency	1.5
Muon trigger and reconstruction	1.0
Kinematic reweighting (DDW)	0.8
Pile-up reweighting	0.6

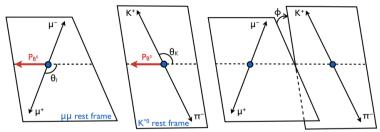
Source	B_s^0 [%]	B ⁰ [%]
f_s/f_d	5.1	-
B^+ yield	4.8	4.8
$R_{arepsilon}$	4.1	4.1
$\mathcal{B}(B^+ \to J/\psi \ K^+) \times \mathcal{B}(J/\psi \to \mu^+\mu^-)$	2.9	2.9
Fit systematic uncertainties	8.7	65
Stat. uncertainty (from likelihood est.)	27	150

Semi-rare

- B⁰ → K^{*0} μ + μ → K+ π - μ + μ is a FCNC process fully described by the three angles (θ_L , θ_K , ϕ) and the di- μ invariant mass squared q^2 .
- New physics entering the loop can be detected by looking at the angular distributions of the decay
- Angular differential decay rate expressed with S coefficients represented by helicity or transversity amplitudes

$$A_{\rm FB} = 3S_6/4$$

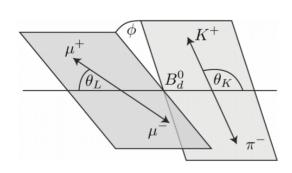

A_{FB} = Forward-backward Asymmetry F_L = fraction of longitudinally polarised K* F_S = s-wave fraction

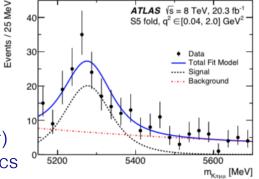

$$P_{1} = \frac{2S_{3}}{1 - F_{L}}$$

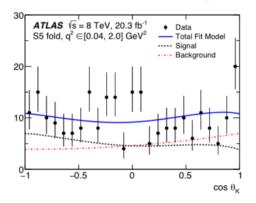
$$P_{2} = \frac{2}{3} \frac{A_{FB}}{1 - F_{L}}$$

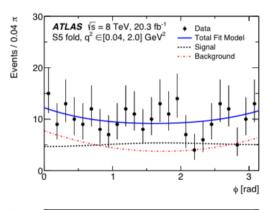
$$P_{3} = -\frac{S_{9}}{1 - F_{L}}$$

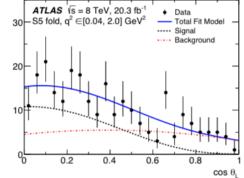
$$P'_{j=4,5,6,8} = \frac{S_{i=4,5,7,8}}{\sqrt{F_{L}(1 - F_{L})}}.$$


 Generally written in terms of P and P' observables as they are less sensitive to theoretical uncertainties at LO


LHCb measured a ~3σ discrepancy with model on P'₅

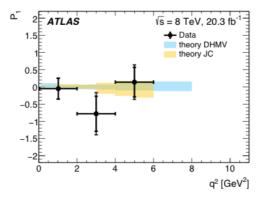


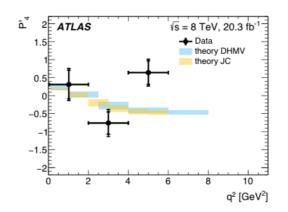


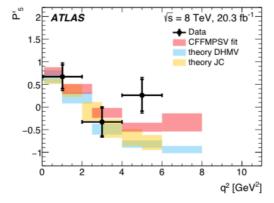

- ATLAS analysis uses ~20 fb⁻¹ of 8 TeV pp data to extract P₁ and P'_i (i=4,5,6,8)
- Fit signal and background
 - o Four fits, 3 free parameters each
 - o FL, S3 common to each fit
 - S4, S5, S7, S8 fitted parameters
 - o P1, Pi' extracted from fit parameters
 - S-wave component (non-resonant Kπ) neglected and included as systematics
 - o 340 events in 3 q² bins
- Signal PDF folded to reduce the number of free parameters and improve fit convergence

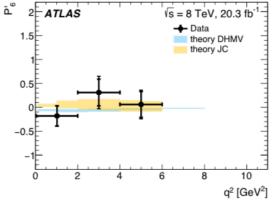
Examples with S5 folding scheme applied

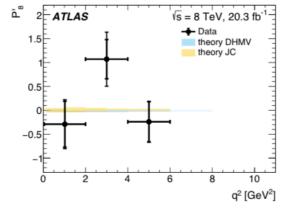
Result still statistically limited

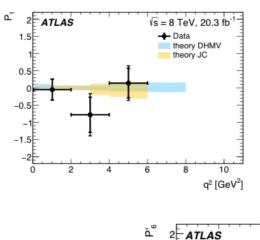


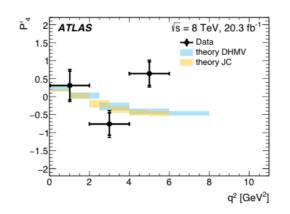


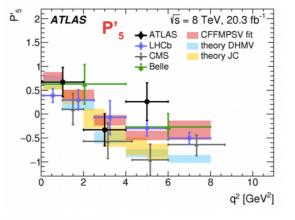

Theory:

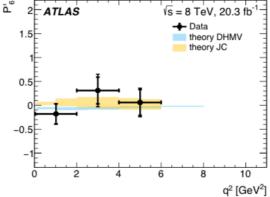

- DHMV/JC: QCD factorization, hadronic uncertainties from calculations
- HEP t/CFFMPSV t: hadronic charm contributions fitted from LHCb data

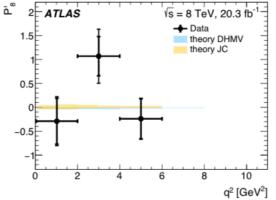

 ATLAS generally in good agreement with SM, except a ~2.5σ deviation from DHMV for P₄', P₅' in one bin






Theory:


- DHMV/JC: QCD factorization, hadronic uncertainties from calculations
- HEP t/CFFMPSV t: hadronic charm contributions fitted from LHCb data


 ATLAS generally in good agreement with SM, except a ~2.5σ deviation from DHMV for P₄', P₅' in one bin

