Low Mass Particles in LHC Experiments

Philip Ilten UNIVERSITY^{OF}BIRMINGHAM January 23, 2020

NEW PHYSICS ON THE LOW-ENERGY PRECISION FRONTIER

An Event at LHCb

meson	meson/event	e^+e^-/event
π^+	$1.27 imes 10^1$	_
π^0	7.08×10^0	8.50×10^{-2}
ρ^+	1.96×10^0	2.36×10^{-2}
K^+	1.44×10^0	—
$ ho^0$	1.02×10^0	2.36×10^{-5}
ω	$9.87 imes 10^{-1}$	1.24×10^{-2}
n	$9.71 imes 10^{-1}$	—
p	$9.51 imes 10^{-1}$	—
η	8.31×10^{-1}	1.80×10^{-2}
K_S^0	7.08×10^{-1}	5.25×10^{-3}
K_L^0	7.07×10^{-1}	_

Hidden Sectors

broken U(1) gauge symmetry in dark sector
 allow mixing between dark and SM hypercharge fields

$$\mathcal{L} \supset -rac{1}{4}F_{\mu
u}F^{\mu
u} - rac{1}{4}F'_{\mu
u}F'^{\mu
u} + rac{m_{A'}^2}{2}A'_{\mu}A'^{\mu} + g_eJ^{\mu}A_{\mu} + gg_eJ^{\mu}A'_{\mu}$$

Dark Photons

mass of the dark photon, m_{A'}, and mixing, g, are free parameters
 the dark photon couples like the photon, modified by g
 if m_{A'} < 2m_{DM} then dark photon decays visibly

- what happens if **2** and **3** are relaxed?
- require $m_{A'}$, g, 12 fermion couplings, and an invisible width
- dark photon limits can be recast to any general vector model

Parameter Space

Lifetime

Decay Products

Search Strategies

- EM background free
- difficult to normalise

- sensitive to shorter lifetimes
- bump hunt on large EM background
- normalised from sidebands
- do both simultaneously for best of both worlds

Production: Electron Bremsstrahlung

Production: Proton Bremsstrahlung

Production: Hadron <u>Decays</u>

Production: Electron-Positron Annihilation

Searching with LHCb *in theory* ...

Ilten, Soreq, Thaler, Williams, Xue Phys. Rev. Lett. **116**, no. 25, 251803 (2016)

Ilten, Thaler, Williams, Xue Phys. Rev. D **92**, no. 11, 115017 (2015)

LHCb Detector

Low Mass at LHC

Data Taking

Good Backgrounds (prompt)

Signal (prompt and displaced)

Bad Backgrounds (prompt)

 $N_{\rm signal}$ is not proportional to $N_{\rm bad}$ LHCb mis-ID probability ≈ 1 out of 1000

Production in Theory

Low Mass Breakdown

Reach (prompt) in Theory

Bad Backgrounds (displaced)

Reach $\overline{(displaced)}$ in Theory

Full Reach in Theory

Searching with LHCb *in practice* ...

LHCb Collaboration LHCb-PAPER-2019-031 (2019)

LHCb Collaboration Phys. Rev. Lett. **120**, no. 6, 061801 (2018)

> LHCb Collaboration JINST 13, no. 06, P06008 (2018)

37

Real Data (prompt)

Limits (prompt)

27 / 48

Real Data (*displaced*)

VELO Sensors

RF Foil

Bad Backgrounds (displaced)

Limits (displaced)

Dark Photons and beyond ...

Ilten, Soreq, Williams, Xue JHEP **1806**, 004 (2018)

*

DARKCAST

• recast to any general model, e.g. 15 free parameters

- available at gitlab.com/philten/darkcast
- accompanying paper Serendipity in dark photon searches

The Master Plan

- given (m, g_A) for model A, solve to find (m, g_B) for model B $\sigma_A(m, g_A)\mathcal{B}_A(m)\varepsilon(\tau_A(m, g_A)) = \sigma_B(m, g_B)\mathcal{B}_B(m)\varepsilon(\tau_B(m, g_B))$
- absolute cross-section can be tricky, ratios are easier

$$\frac{\sigma_A(m, g_A)}{\sigma_B(m, g_B)} \frac{\varepsilon(\tau_A(m, g_A))}{\varepsilon(\tau_B(m, g_B))} \frac{\mathcal{B}_A(m)}{\mathcal{B}_B(m)} = 1$$

branching fraction ratio: hidden local symmetries
 cross-section ratio: hidden local symmetries

 $V \in (\rho, \omega, \phi, K^*, \bar{K}^*)$ generated from $U(3)_V$

3 efficiency ratio: define proper time fiducial region with t_0 and t_1

$$\varepsilon(\tau) = e^{-t_0/\tau} - e^{-t_1/\tau}$$

Widths

• width can be calculated perturbatively for fermions

$$\Gamma_{ff}(m,g) = \frac{g^2 c_f Q_f^2}{12\pi} m \left(1 + \frac{m_f^2}{m}\right) \sqrt{1 - 4\frac{m_f^2}{m}}$$

- c_f is 1 for charged leptons, 3 for quarks, and 1/2 for neutrinos
- Q_f is the model coupling for that fermion
- but ... below 2 GeV this prediction is no longer reliable
- use data instead!

$$\Gamma_{\rm hadrons}(m,g) = \Gamma_{\mu\mu}(m,g) \mathcal{R}(m)$$

•
$$\mathcal{R}(\mathbf{m})$$
 is $\sigma(ee \to \text{hadrons})/\sigma(ee \to \mu\mu)$

The Data!

37 / 48

B Boson

*

Cid Vidal, **Ilten**, Plews, Shuve, Soreq Phys. Rev. D **100**, no. 5, 053003 (2019)

Ilten arXiv:1908.08353 [hep-ph] (2019)

*

A Special Case

- true muonium is a $\mu^+\mu^-$ state, not yet observed!
- different spin configurations, most abundant are 1S_0 and 3S_1
- ${}^1S_0 \to \gamma\gamma$ and ${}^3S_1 \to e^+e^-$

$$E_B \approx m_\mu \alpha^2 / 4 = 1.41 \,\mathrm{keV}$$

$$m_{\mathcal{TM}} \approx 2m_{\mu} - E_B \approx 211 \,\mathrm{MeV}$$

$$g_{TM} \approx \alpha^2/2 \approx 2.66 \times 10^{-5}$$

$$\tau_{\mathcal{TM}} \approx \frac{6}{\alpha^5 m_{\mu}} \approx 1800 \text{ fs}$$

Mind the Gap

Inclusive Production

Dissociation

Detector Effects: Case (i)

Detector Effects: Case (ii)

*

Discovery Potential

The Competition

Final Thoughts

- LHC events provide huge fluxes of hadrons
 - triggering can be possible
 - requires some handle like leptons or displaced topology
- many analyses beyond LHCb dark photon
 - dark photon analysis down to 10 GeV from CMS
 - scalar searches at Υ peaks from LHCb
 - Majorana neutrino search with $B^- \rightarrow \pi^+ \mu^- \mu^-$ from LHCb
 - axion search with $B^0 \to K^{*0} \mu^+ \mu^-$ from LHCb
- possibility to extend to longer-lived particles with CODEX-b
- tools available for recasting like DARKCAST and CIMBA

Appendix

*

New Physics in TM

Hidden Symmetries

- but what about flavour dependent couplings?
- use hidden local symmetries framework for VMD
- vector mesons $V\in(\rho,\omega,\phi,K^*,\bar{K}^*)$ are gauge bosons of hidden $U(3)_V$ symmetry
- vertices take the form PV_iV_j with P from the pseudoscalar nonet $P\in(\pi,\eta,\eta',K,\bar{K})$

$$\Gamma r(T_{V_i}, T_{V_j}, T_P)$$

- T are the meson generators, e.g. $T_{\omega} = \frac{1}{2}(1,1,0)$
- external gauge fields mix through V

 $\operatorname{Tr}(T_V, Q)$

• Q is the fermion coupling vector (Q_u, Q_d, Q_s)

Vector Decomposition

B-L Boson

B Boson

Protophobic Boson

Production Ratios

• electron-positron annihilation and electron bremsstrahlung

$$\frac{\sigma_A(m, g_A)}{\sigma_B(m, g_B)} = \frac{g_A{}^2 Q_A^{e^2}}{g_B{}^2 Q_B^{e^2}}$$

• proton bremsstrahlung

$$\frac{\sigma_A(m,g_A)}{\sigma_B(m,g_B)} = \frac{g_A{}^2(2Q_A^u + Q_A^d)^2}{g_B{}^2(2Q_A^u + Q_A^d)^2}$$

• hadron decays of the form $X \to YA$

$$\frac{\sigma_A(m, g_A)}{\sigma_B(m, g_B)} = \frac{g_A^2 \sum_V \operatorname{Tr}(T_X, T_Y, T_V) \operatorname{Tr}(T_V, Q_A) \operatorname{BW}_V(m)}{g_B^2 \sum_V \operatorname{Tr}(T_X, T_Y, T_V) \operatorname{Tr}(T_V, Q_B) \operatorname{BW}_V(m)}$$

LHCb Production Fractions

• templates taken from Monte Carlo and fit against LHCb result

CIMBA

• quickly generate single particles from minimum bias events

- available at gitlab.com/philten/cimba
- accompanying paper CIMBA: fast Monte Carlo generation using cubic interpolation

```
import cimba, random
# Create the random number generator.
rng = random.Random()
# Load the interpolation grid.
grid = cimba.grid("data/pp14TeV.pkl")
# Create the particle gun.
pgun = cimba.ParticleGun(grid, "all/211", rng.random, ptlim, etalim)
# Generate a particle.
pgun()
```

Efficiencies

- define proper time fiducial region with t_0 and t_1

$$\varepsilon(\tau) = e^{-t_0/\tau} - e^{-t_1/\tau}$$

- for prompt limits, $t_0 = 0$ and t_1 depends on the boost

$$t_1 = \frac{L_{\max}}{\gamma}$$

- for displaced beam-dump limits, relate t_0 and t_1

$$t_1 = t_0 + \frac{L_{\text{detector}}}{L_{\text{shield}}}$$

 \rightarrow upper and lower limits are solutions, equate and solve for $t_0 :$

$$\sigma(m, g_{\max})\mathcal{B}(m)\varepsilon\left(\tau(m, g_{\max})\right) = \sigma(m, g_{\min})\mathcal{B}(m)\varepsilon\left(\tau(m, g_{\min})\right)$$

B-L Boson

B Boson

Protophobic Boson

