Testing the Standard Model and Probing New Physics with Low-Energy Atomic, Molecular and Optical Experiments

Yevgeny Stadnik

Kavli Fellow

Kavli IPMU, University of Tokyo, Japan

“New Physics on the Low-Energy Precision Frontier”, CERN, January 2020
1. Electroweak Phenomena

2. Electric Dipole Moments

Outline

1. Electroweak Phenomena

2. Electric Dipole Moments

EW Phenomena in Atoms (PNC)

Electromagnetic

$e \leftrightarrow e$

γ

$N \leftrightarrow N$

Parity conserving,
long range
Electromagnetic
Parity conserving,
long range

\[e \rightarrow \gamma \rightarrow e \]

Weak neutral current
Parity violating,
short range (~10^{-18} m)

\[e \rightarrow Z \rightarrow e \]
EW Phenomena in Atoms (PNC)

\[\Gamma_{\pm} = \pm 2 \]

Electromagnetic
- Parity conserving, long range

Weak neutral current
- Parity violating, short range (~10^{-18} m)
Electromagnetic Weak neutral current

Parity conserving, long range

\[\pm \]

Flip sign by reversing a P-odd invariant, e.g.

\[[E \cdot (\varepsilon \times B)](\varepsilon \cdot B) \]

EW Phenomena in Atoms (PNC)

Parity violating, short range (~10^{-18} m)

\[\pm \]
EW Phenomena in Atoms (PNC)

\[\Gamma_\pm = \]

<table>
<thead>
<tr>
<th>Electromagnetic</th>
<th>Weak neutral current</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e \to e)</td>
<td>(e \to e)</td>
</tr>
<tr>
<td>(N \to N)</td>
<td>(N \to N)</td>
</tr>
</tbody>
</table>

Parity conserving, long range

Parity violating, short range \((\sim 10^{-18} \text{ m})\)

Flip sign by reversing a P-odd invariant, e.g.
\[[E \cdot (\varepsilon \times B)](\varepsilon \cdot B) \]

Measure parity-nonconserving amplitude \(E_{PNC} = \Gamma_+ - \Gamma_- \)

\[\Rightarrow \text{Determine nuclear weak charge } Q_W = -N + Z [1 - 4\sin^2(\theta_W)] \approx -N \]
Parity violation in weak neutral current interactions first discovered in bismuth optical rotation experiments in Novosibirsk

[Barkov, Zolotorev, JETP Lett. 27, 357 (1978); Pis’ma Zh. Eksp. Teor. Fiz. 27, 379 (1978)]
EW Phenomena in Atoms (PNC)

Parity violation in weak neutral current interactions first discovered in bismuth optical rotation experiments in Novosibirsk

[Bar'kov, Zolotorev, JETP Lett. 27, 357 (1978); Pis'ma Zh. Eksp. Teor. Fiz. 27, 379 (1978)]

Current “gold standard” – caesium beam experiment in Boulder:

\[Q_W (^{133}\text{Cs}) = -72.58(29)_{\text{exp}}(32)_{\text{theory}} \text{ cf. } Q_W (^{133}\text{Cs})_{\text{SM}} = -73.23(2) \]

Experiment: [Wood et al., Science 275, 1759 (1997)]

Theory: [Dzuba, Berengut, Flambaum, Roberts, PRL 109, 203003 (2012)]
EW Phenomena in Atoms (PNC)

Parity violation in weak neutral current interactions first discovered in bismuth optical rotation experiments in Novosibirsk

[Barkov, Zolotorev, JETP Lett. 27, 357 (1978); Pis’ma Zh. Eksp. Teor. Fiz. 27, 379 (1978)]

Current “gold standard” – caesium beam experiment in Boulder:

\[Q^\text{W} (^{133}\text{Cs}) = -72.58(29) \exp(32) \text{theory} \quad \text{cf.} \quad Q^\text{W} (^{133}\text{Cs})_{\text{SM}} = -73.23(2) \]

Experiment: [Wood et al., Science 275, 1759 (1997)]

Theory: [Dzuba, Berengut, Flambaum, Roberts, PRL 109, 203003 (2012)]

Bounds on new physics:

Extra standard-type \(Z \) boson: \(M_{Z'} > 700 \) GeV

[Dzuba, Berengut, Flambaum, Roberts, PRL 109, 203003 (2012)]

Extra generic spin-1 boson:

\[|g^A_e g^V_N| < 3 \times 10^{-14}, \quad M_V < 1 \text{ keV}; \quad |g^A_e g^V_N|/M^2_V < 4 \times 10^{-8} \text{ GeV}^{-2}, \quad M_V > 200 \text{ keV} \]

[Dzuba, Flambaum, Stadnik, PRL 119, 223201 (2017)]
Parity-violating toroidal moment:

\[a = -\pi \int d^3r \; r^2 j(r) \propto \kappa_a l \]
Nuclear Anapole Moments (PNC)

Parity-violating toroidal moment:

\[a = -\pi \int d^3r \, r^2 j(r) \propto \kappa_a l \]

\(\kappa_a \) determined by parity-violating intranuclear forces
Parity-violating toroidal moment:

\[a = -\pi \int d^3r \ r^2 j(r) \propto \kappa_a I \]

\(\kappa_a \) determined by parity-violating intranuclear forces

\[H_{\text{anapole}} = e \alpha \cdot a \delta(r) \]

Measure nuclear-spin-dependent PNC amplitude
Nuclear Anapole Moments (PNC)

So far, only observation of nuclear anapole moment in caesium beam experiment in Boulder:

\[\kappa_a (^{133}\text{Cs})_{\text{exp}} = 0.36(6) \quad \text{cf.} \quad \kappa_a (^{133}\text{Cs})_{\text{theory}} = 0.27(8) \]

Experiment: [Wood et al., Science 275, 1759 (1997)]

Theory: [Flambaum, Murray, PRC 56, 1641 (1997)]
Nuclear Anapole Moments (PNC)

So far, only observation of nuclear anapole moment in caesium beam experiment in Boulder:

\[\kappa_a (^{133}\text{Cs})_{\text{exp}} = 0.36(6) \quad \text{cf.} \quad \kappa_a (^{133}\text{Cs})_{\text{theory}} = 0.27(8) \]

Experiment: [Wood et al., Science 275, 1759 (1997)]

Theory: [Flambaum, Murray, PRC 56, 1641 (1997)]

Bounds on new physics:

Extra generic spin-1 boson:

\[|g_P A g_N^V| < 6 \times 10^{-8}, M_V < 30 \text{ MeV}; \quad |g_P A g_N^V|/M_V^2 < 2 \times 10^{-5} \text{ GeV}^{-2}, M_V > 200 \text{ MeV} \]

[Dzuba, Flambaum, Stadnik, PRL 119, 223201 (2017)]
Nuclear Anapole Moments (PNC)

So far, only observation of nuclear anapole moment in caesium beam experiment in Boulder:

$$\kappa_a (^{133}\text{Cs})_{\text{exp}} = 0.36(6) \text{ cf. } \kappa_a (^{133}\text{Cs})_{\text{theory}} = 0.27(8)$$

Experiment: [Wood et al., Science 275, 1759 (1997)]

Theory: [Flambaum, Murray, PRC 56, 1641 (1997)]

Bounds on new physics:

Extra generic spin-1 boson:

$$|g_p^A g_N^V| < 6 \times 10^{-8}, M_V < 30 \text{ MeV}; \quad |g_p^A g_N^V|/M_V^2 < 2 \times 10^{-5} \text{ GeV}^{-2}, M_V > 200 \text{ MeV}$$

[Dzuba, Flambaum, Stadnik, PRL 119, 223201 (2017)]

New experiments targeting observation of anapole moments in odd-neutron nuclei (mainly sensitive to g_n): $^{137}\text{BaF, }^{171,173}\text{Yb}$
Ground-state hyperfine interval in muonium (e⁻μ⁺ bound state):

\[\nu_{\text{exp}} = 4463302776(51) \text{ Hz} \quad \text{cf.} \quad \nu_{\text{theory}} = 4463302868(271)^* \text{ Hz} \]

* \(u[\nu_{\text{theory}}(m_e/m_\mu)] \approx 260 \text{ Hz} \), \(u[\nu_{\text{theory}}(4^{\text{th}}\text{-order QED})] \approx 85 \text{ Hz} \), \(u[\nu_{\text{theory}}(\text{others})] \lesssim \mathcal{O}(\text{Hz}) \)

Experiment: [Liu et al., PRL 82, 711 (1999)]

Theory (summary): [CODATA, Rev. Mod. Phys. 88, 035009 (2016)]
Ground-state hyperfine interval in muonium ($e^-\mu^+$ bound state):

$$\nu_{\text{exp}} = 4463302776(51) \text{ Hz} \quad \text{cf.} \quad \nu_{\text{theory}} = 4463302868(271)^* \text{ Hz}$$

* $u[\nu_{\text{theory}}(m_e/m_\mu)] \approx 260 \text{ Hz}$, $u[\nu_{\text{theory}}(4^{\text{th}}\text{-order QED})] \approx 85 \text{ Hz}$, $u[\nu_{\text{theory}}(\text{others})] \lesssim O(\text{Hz})$

Experiment: [Liu et al., PRL 82, 711 (1999)]

Theory (summary): [CODATA, Rev. Mod. Phys. 88, 035009 (2016)]

$$\delta \nu_{\text{weak}} = -65 \text{ Hz}, \text{ independent of } \sin^2(\theta_W) \text{ at LO}$$

[Eides, PRA 53, 2953 (1996)]
Ground-state hyperfine interval in muonium ($e^-\mu^+$ bound state):

$$\nu_{\text{exp}} = 4463302776(51) \text{ Hz} \quad \text{cf.} \quad \nu_{\text{theory}} = 4463302868(271)^* \text{ Hz}$$

* $u[\nu_{\text{theory}}(m_e/m_\mu)] \approx 260 \text{ Hz}$, $u[\nu_{\text{theory}}(4^{\text{th}}\text{-order QED})] \approx 85 \text{ Hz}$, $u[\nu_{\text{theory}}(\text{others})] \lesssim \mathcal{O}(\text{Hz})$

Experiment: [Liu et al., *PRL* 82, 711 (1999)]

\[\delta \nu_{\text{weak}} = -65 \text{ Hz}, \text{ independent of } \sin^2(\theta_W) \text{ at LO}\]

[Hides, *PRA* 53, 2953 (1996)]

New experiments and calculations targeting $\sim \mathcal{O}(10)$ Hz precision level
Enhanced Sensitivity to Highly-Singular Parity-Conserving Forces in Muonium

[Stadnik, *PRL* 120, 223202 (2018)]

Illustrative example – SM predicts “long range” neutrino-mediated forces

In 4-Fermi approximation:

\[V_\nu(r) \sim \frac{G_F^2}{r^5} + \text{spin-dependent terms} \]
Enhanced Sensitivity to Highly-Singular Parity-Conserving Forces in Muonium

Illustrative example – SM predicts “long range” neutrino-mediated forces

In 4-Fermi approximation:

\[V_\nu(r) \sim \frac{G_F^2}{r^5} + \text{spin-dependent terms} \]

\[\delta \nu \sim \left(\frac{a_B}{\lambda_Z} \right)^2 \left(\frac{G_F^2}{a_B^5} \right) \sim \text{Hz} \]

No centrifugal barrier!

No hadronic nucleus => lower cutoff length scale is \(\sim \lambda_Z \), instead of \(\sim R_{\text{nucl}} \)
Enhanced Sensitivity to Highly-Singular Parity-Conserving Forces in Muonium

[Stadnik, PRL 120, 223202 (2018)]

Illustrative example – SM predicts “long range” neutrino-mediated forces

In 4-Fermi approximation:

\[V_{\nu}(r) \sim \frac{G_F^2}{r^5} + \text{spin-dependent terms} \]

\[\delta \nu_\nu \sim \frac{(a_B/\lambda_Z)^2(G_F^2/a_B^5)}{r} \sim \text{Hz} \]

No centrifugal barrier!

No hadronic nucleus => lower cutoff length scale is \(\sim \lambda_Z \), instead of \(\sim R_{\text{nucl}} \)

=> clean system
Enhanced Sensitivity to Highly-Singular Parity-Conserving Forces in Muonium

[Stadnik, *PRL* 120, 223202 (2018)]

Illustrative example – SM predicts “long range” neutrino-mediated forces

\[
\delta \nu \sim (a_B/\lambda_Z)^2 (G_F^2/a_B^5) \sim \text{Hz}
\]

No centrifugal barrier!

No hadronic nucleus \(\Rightarrow \) lower cutoff length scale is \(\sim \lambda_Z \), instead of \(\sim R_{\text{nucl}} \)

\(\Rightarrow \) clean system

\[F_\nu \propto (R^3)^2/r^6 \leq R^0 \Rightarrow \text{no penalty in small systems, cf. } F_{\text{grav}} \propto (R^3)^2/r^2 \leq R^4 \]
Illustrative example – SM predicts “long range” neutrino-mediated forces

\[V_\nu(r) \sim \frac{G_F^2}{r^5} \quad + \quad \text{spin-dependent terms} \]

\[\delta \nu \sim (a_B/\lambda_Z)^2 (G_F^2/a_B^5) \sim \text{Hz} \]

No centrifugal barrier!

No hadronic nucleus \(\Rightarrow \) lower cutoff length scale is \(\sim \lambda_Z \), instead of \(\sim R_{\text{nucl}} \)

\(\Rightarrow \) clean system

\[F_\nu \propto (R^3)^2/r^6 \leq R^0 \quad \Rightarrow \quad \text{no penalty in small systems, cf.} \quad F_{\text{grav}} \propto (R^3)^2/r^2 \leq R^4 \]

\[(G_{\text{eff}}^2)_{\mu\text{onium}} < 10^2 G_F^2 \quad \text{cf.} \quad (G_{\text{eff}}^2)_{\text{macroscopic}} < 10^{20} G_F^2 \]
Outline

1. Electroweak Phenomena

2. Electric Dipole Moments

Motivation for EDM Experiments

• Observed predominance of matter over antimatter in Universe
Motivation for EDM Experiments

• Observed predominance of matter over antimatter in Universe

• In hot big bang model, require sources of CP violation to produce this asymmetry
Motivation for EDM Experiments

• Observed predominance of matter over antimatter in Universe

• In hot big bang model, require sources of CP violation to produce this asymmetry

• Known sources of CP violation in the standard model (δ_{CKM} and $\theta_{\text{QCD}} \approx 0$) insufficient
Motivation for EDM Experiments

• Observed predominance of matter over antimatter in Universe

• In hot big bang model, require sources of CP violation to produce this asymmetry

• Known sources of CP violation in the standard model (δ_{CKM} and $\theta_{\text{QCD}} \approx 0$) insufficient

• EDM experiments are high-precision low-energy probes of possible new sources of CP violation
Atomic Electric Dipole Moments
Atomic Electric Dipole Moments

\[\psi = + \xi = \implies |\psi|^2 = \]
Atomic Electric Dipole Moments

\[h\nu_i = 2|\mu_i B \pm d_i E| \]

\[\psi = + \xi + - \Rightarrow |\psi|^2 = \]
Atomic Electric Dipole Moments

Flip sign by reversing the P,T-odd invariant $\mathbf{E} \cdot \mathbf{B}$

$$\hbar \nu_i = 2 |\mu_i B \pm d_i E|$$

$$\psi = + \xi + = \Rightarrow |\psi|^2 =$$
Hadronic CP Violation in Diamagnetic Atoms

Nucleon EDMs: [Crewther, Di Vecchia, Veneziano, Witten, *PLB* 88, 123 (1979)]

Intranuclear forces: [Haxton, Henley, *PRL* 51, 1937 (1983)],
[O. Sushkov, Flambaum, Khriplovich, *JETP* 60, 873 (1984)]

Illustrative example:

\[\mathcal{L}_{\theta_{QCD}} = \theta \frac{g^2}{32\pi^2} G\tilde{G} \]
Hadronic CP Violation in Diamagnetic Atoms

Nucleon EDMs: [Crewther, Di Vecchia, Veneziano, Witten, PLB 88, 123 (1979)]

Intranuclear forces: [Haxton, Henley, PRL 51, 1937 (1983)],
[O. Sushkov, Flambaum, Khriplovich, JETP 60, 873 (1984)]

Illustrative example:

\[\mathcal{L}_{\theta_{QCD}} = \theta \frac{g^2}{32\pi^2} G \tilde{G} \]

Nucleon EDMs
Hadronic CP Violation in Diamagnetic Atoms

Nucleon EDMs: [Crewther, Di Vecchia, Veneziano, Witten, *PLB* 88, 123 (1979)]

Illustrative example:

\[\mathcal{L}_{\theta_{QCD}} = \theta \frac{g^2}{32\pi^2} G \tilde{G} \]

In nuclei, *tree-level* CP-violating intranuclear forces dominate over *loop-induced* nucleon EDMs [loop factor = \(1/(8\pi^2)\)].
Screening of Hadronic CP Violation in Atoms

[Schiff, Phys. Rev. 132, 2194 (1963)]

Schiff’s Theorem: “In a neutral atom made up of point-like non-relativistic charged particles (interacting only electrostatically), the constituent EDMs are screened from an external electric field.”
Screening of Hadronic CP Violation in Atoms

[Schiff, Phys. Rev. 132, 2194 (1963)]

Schiff’s Theorem: “In a neutral atom made up of point-like non-relativistic charged particles (interacting only electrostatically), the constituent EDMs are screened from an external electric field.”

Classical explanation for nuclear EDM: A neutral atom does not accelerate in an external electric field!
Screening of Hadronic CP Violation in Atoms

Schiff’s Theorem: “In a neutral atom made up of point-like non-relativistic charged particles (interacting only electrostatically), the constituent EDMs are screened from an external electric field.”

Classical explanation for nuclear EDM: A neutral atom does not accelerate in an external electric field!
Screening of Hadronic CP Violation in Atoms

[Schiff, Phys. Rev. 132, 2194 (1963)]

Schiff’s Theorem: “In a neutral atom made up of point-like non-relativistic charged particles (interacting only electrostatically), the constituent EDMs are screened from an external electric field.”

Classical explanation for nuclear EDM: A neutral atom does not accelerate in an external electric field!
Lifting of Schiff’s Theorem

[Sandars, *PRL* 19, 1396 (1967)],
[O. Sushkov, Flambaum, Khriplovich, *JETP* 60, 873 (1984)]

In real (heavy) atoms: Incomplete screening of external electric field due to finite nuclear size, parametrised by *nuclear Schiff moment*.
Over the past decade, molecular experiments have improved sensitivity to electron EDM d_e by more than 100-fold:

ThO bound: $|d_e| < 10^{-29}$ e cm

Over the past decade, molecular experiments have improved sensitivity to electron EDM d_e by more than 100-fold:

ThO bound: $|d_e| < 10^{-29}$ e cm

Sensitivity boost comes from large *effective* electric field seen by unpaired electrons: $E_{\text{eff}} \sim 10 – 100$ GV/cm $\sim 10^5 E_{\text{lab, max}}$
Leptonic CP Violation in Paramagnetic Molecules

Over the past decade, molecular experiments have improved sensitivity to electron EDM d_e by more than 100-fold:

ThO bound: $|d_e| < 10^{-29}$ e cm

[Andreev et al. (ACME), *Nature* 562, 355 (2018)]

Sensitivity boost comes from large effective electric field seen by unpaired electrons: $E_{\text{eff}} \sim 10 - 100$ GV/cm $\sim 10^5 E_{\text{lab, max}}$

Small magnetic moment in $^3\Delta_1$ ThO state: $|\mu_{\text{ThO}}(^3\Delta_1)| \sim 10^{-2} \mu_B$

\Rightarrow Less sensitive to (stray) magnetic fields
Leptonic CP Violation in Paramagnetic Molecules

Over the past decade, molecular experiments have improved sensitivity to electron EDM d_e by more than 100-fold:

ThO bound: $|d_e| < 10^{-29}$ e cm

[Andreev et al. (ACME), *Nature* 562, 355 (2018)]

Sensitivity boost comes from large *effective* electric field seen by unpaired electrons: $E_{\text{eff}} \sim 10 – 100$ GV/cm $\sim 10^5 E_{\text{lab,max}}$

Small magnetic moment in $^3\Delta_1$ ThO state: $|\mu_{\text{ThO}}(^3\Delta_1)| \sim 10^{-2} \mu_B$

\Rightarrow Less sensitive to (stray) magnetic fields

What about sensitivity to hadronic CP violation?
Hadronic CP Violation in Paramagnetic Molecules

[Flambaum, Pospelov, Ritz, Stadnik, arXiv:1912.13129]

Hadronic CP-violating effects arise at 2-loop level

\[\mathcal{O}(m_{\pi}^{-2}) \] (LO)

\[\mathcal{O}(m_{\pi}^{-1}) \] (NLO)

\[\mu - d: \mathcal{O}[\ln(A)/p_F] \]
Hadronic CP Violation in Paramagnetic Molecules

[Flambaum, Pospelov, Ritz, Stadnik, arXiv:1912.13129]

Hadronic CP-violating effects arise at 2-loop level, $\mathcal{O}(A)$ enhanced

LO: $\mathcal{O}(m_{\pi}^{-2})$

NLO: $\mathcal{O}(m_{\pi}^{-1})$

$\mu - d: \mathcal{O}[\ln (A)/p_F]$
Hadronic CP Violation in Paramagnetic Molecules

[Flambaum, Pospelov, Ritz, Stadnik, arXiv:1912.13129]

Hadronic CP-violating effects arise at 2-loop level, $\mathcal{O}(A)$ enhanced

Interaction of one of photons with nucleus is magnetic \Rightarrow no Schiff screening

LO: $\mathcal{O}(m_\pi^{-2})$

NLO: $\mathcal{O}(m_\pi^{-1})$

$\mu - d: \mathcal{O}[\ln (A)/p_F]$
Hadronic CP Violation in Paramagnetic Molecules

[Flambaum, Pospelov, Ritz, Stadnik, arXiv:1912.13129]

Hadronic CP-violating effects arise at 2-loop level, $\mathcal{O}(A)$ enhanced

Interaction of one of photons with nucleus is *magnetic* \Rightarrow no Schiff screening

LO: $\mathcal{O}(m^{-2}_\pi)$

NLO: $\mathcal{O}(m^{-1}_\pi)$

$\mu - d$: $\mathcal{O}[\ln(A)/p_F]$

π^0, η contributions: *opposite sign*

p, n contributions: *same sign*

Example $- \theta_{QCD}$ term:

For $Z \approx 80, A \approx 200$: $C_{SP}(\theta) \approx [0.1_{\text{LO}} + 1.0_{\text{NLO}} + 1.7_{(\mu d)}] \times 10^{-2} \theta \approx 0.03 \theta$
Bounds on Hadronic CP Violation Parameters

ThO bounds: [Flambaum, Pospelov, Ritz, Stadnik, arXiv:1912.13129]

|θ|_{ThO} < 3 \times 10^{-8}
|θ|_{n} < 2 \times 10^{-10}
|θ|_{Hg} < 1.5 \times 10^{-10}

|d_{p}|_{ThO} < 2 \times 10^{-23} \text{ e cm}
|d_{p}|_{Hg} < 2 \times 10^{-25} \text{ e cm}
|d_{p}|_{Xe} < 3 \times 10^{-22} \text{ e cm}

|\bar{g}_{\pi NN}^{(1)}|_{ThO} < 4 \times 10^{-10}
|\bar{g}_{\pi NN}^{(1)}|_{n} < 1 \times 10^{-10}
|\bar{g}_{\pi NN}^{(1)}|_{Hg} < 1 \times 10^{-12}
|\bar{g}_{\pi NN}^{(1)}|_{Xe} < 7 \times 10^{-8}
Bounds on Hadronic CP Violation Parameters

ThO bounds: [Flambaum, Pospelov, Ritz, Stadnik, arXiv:1912.13129]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\theta</td>
</tr>
<tr>
<td>$</td>
<td>\theta</td>
</tr>
<tr>
<td>$</td>
<td>\theta</td>
</tr>
<tr>
<td>$</td>
<td>d_{p}</td>
</tr>
<tr>
<td>$</td>
<td>d_{p}</td>
</tr>
<tr>
<td>$</td>
<td>d_{p}</td>
</tr>
<tr>
<td>$</td>
<td>\bar{g}_{\pi NN}^{(1)}</td>
</tr>
</tbody>
</table>

Current bounds from molecules are ~ 10–100 times weaker than from Hg & n, but are ~ 10–100 times stronger than bounds from Xe.
Bounds on Hadronic CP Violation Parameters

ThO bounds: [Flambaum, Pospelov, Ritz, Stadnik, arXiv:1912.13129]

$	\theta	_{\text{ThO}} < 3 \times 10^{-8}$
$	\theta	_{n} < 2 \times 10^{-10}$
$	\theta	_{\text{Hg}} < 1.5 \times 10^{-10}$

$	d_{p}	_{\text{ThO}} < 2 \times 10^{-23} \text{ e cm}$
$	d_{p}	_{\text{Hg}} < 2 \times 10^{-25} \text{ e cm}$
$	d_{p}	_{\text{Xe}} < 3 \times 10^{-22} \text{ e cm}$

$	\bar{g}_{\pi NN}^{(1)}	_{\text{ThO}} < 4 \times 10^{-10}$
$	\bar{g}_{\pi NN}^{(1)}	_{n} < 1 \times 10^{-10}$
$	\bar{g}_{\pi NN}^{(1)}	_{\text{Hg}} < 1 \times 10^{-12}$
$	\bar{g}_{\pi NN}^{(1)}	_{\text{Xe}} < 7 \times 10^{-8}$

Current bounds from molecules are ~10–100 times weaker than from Hg & n, but are ~10–100 times stronger than bounds from Xe

Clean bound on $\bar{g}_{\pi NN}^{(1)}$, unlike from Hg Schiff moment (where nuclear uncertainties can formally nullify sensitivity to $\bar{g}_{\pi NN}^{(1)}$ and derived quantities, e.g. $\tilde{d}_{u} - \tilde{d}_{d}$)
Outline

1. Electroweak Phenomena

2. Electric Dipole Moments

Motivation

Strong astrophysical evidence for existence of dark matter (~5 times more dark matter than ordinary matter).

$$\rho_{DM} \approx 0.4 \text{ GeV/cm}^3$$

$$v_{DM} \sim 300 \text{ km/s}$$
Motivation

- Dark matter density: \(\rho_{DM} \approx 0.4 \text{ GeV/cm}^3 \)
- Dark matter velocity: \(v_{DM} \approx 300 \text{ km/s} \)

Ultra-low-mass bosons
 - WIMPs

Particle mass
 - Ultralow: \(10^{-21} \text{ eV} \)
 - eV
 - GeV
 - TeV
Motivation

Ultra-low-mass bosons

\[\rho_{DM} \approx 0.4 \text{ GeV/cm}^3 \]
\[\nu_{DM} \sim 300 \text{ km/s} \]

WIMPs

Particle mass

10^{-21} \text{ eV} \quad \text{eV} \quad \text{GeV} \quad \text{TeV}
Low-mass Spin-0 Dark Matter

- Low-mass spin-0 particles form a coherently oscillating classical field $\phi(t) = \phi_0 \cos(m\phi c^2t/\hbar)$, with energy density $\langle \rho_\phi \rangle \approx m_\phi^2 \phi_0^2/2$ ($\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3$)

\[
V(\phi) = \frac{m_\phi^2 \phi^2}{2}
\]

\[
\ddot{\phi} + m_\phi^2 \phi \approx 0
\]
Low-mass Spin-0 Dark Matter

- Low-mass spin-0 particles form a coherently oscillating classical field $\phi(t) = \phi_0 \cos(m_\phi c^2 t/\hbar)$, with energy density $\langle \rho_\phi \rangle \approx m_\phi^2 \phi_0^2/2$ ($\rho_{\text{DM,local}} \approx 0.4$ GeV/cm3)

- Coherently oscillating field, since cold ($E_\phi \approx m_\phi c^2$)
Low-mass Spin-0 Dark Matter

- Low-mass spin-0 particles form a coherently oscillating classical field \(\phi(t) = \phi_0 \cos(m_\phi c^2 t/\hbar) \), with energy density
 \[<\rho_\phi> \approx m_\phi^2 \phi_0^2/2 \left(\rho_{\text{DM,local}} \approx 0.4 \ \text{GeV/cm}^3 \right) \]

- **Coherently oscillating field, since cold** \((E_\phi \approx m_\phi c^2)\)

- \(\Delta E_\phi /E_\phi \sim <v_\phi^2>/c^2 \sim 10^{-6} \Rightarrow \tau_{\text{coh}} \sim 2\pi/\Delta E_\phi \sim 10^6 T_{\text{osc}}\)
Low-mass Spin-0 Dark Matter

• Low-mass spin-0 particles form a coherently oscillating classical field \(\phi(t) = \phi_0 \cos(m_{\phi}c^2t/\hbar) \), with energy density
 \(<\rho_\phi> \approx m_{\phi}^2\phi_0^2/2 \) (\(\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3 \))

• Coherently oscillating field, since cold \((E_\phi \approx m_{\phi}c^2) \)

• \(\Delta E_\phi /E_\phi \sim <v_{\phi}^2>/c^2 \sim 10^{-6} \Rightarrow \tau_{\text{coh}} \sim 2\pi/\Delta E_\phi \sim 10^6 T_{\text{osc}} \)

• Classical field for \(m_{\phi} \lesssim 1 \text{ eV} \), since \(n_{\phi}(\lambda_{\text{dB,}\phi}/2\pi)^3 \gg 1 \)
Low-mass Spin-0 Dark Matter

- Low-mass spin-0 particles form a coherently oscillating classical field $\phi(t) = \phi_0 \cos(m_\phi c^2 t/\hbar)$, with energy density $<\rho_\phi> \approx m_\phi^2 \phi_0^2 / 2 \left(\rho_{DM,local} \approx 0.4 \text{ GeV/cm}^3 \right)$

- Coherently oscillating field, since cold ($E_\phi \approx m_\phi c^2$)

- $\Delta E_\phi / E_\phi \sim <v_\phi^2>/c^2 \sim 10^{-6} \Rightarrow \tau_{coh} \sim 2\pi/\Delta E_\phi \sim 10^6 T_{osc}$

- Classical field for $m_\phi \leq 1 \text{ eV}$, since $n_\phi(\lambda_{dB,\phi}/2\pi)^3 \gg 1$

- $10^{-21} \text{ eV} \leq m_\phi \leq 1 \text{ eV} \iff 10^{-7} \text{ Hz} \leq f \leq 10^{14} \text{ Hz}$

Lyman-α forest measurements [suppression of structures for $L \leq \mathcal{O}(\lambda_{dB,\phi})$]
Low-mass Spin-0 Dark Matter

- Low-mass spin-0 particles form a coherently oscillating classical field $\phi(t) = \phi_0 \cos(m_\phi c^2 t/\hbar)$, with energy density $\langle \rho_\phi \rangle \approx m_\phi^2 \phi_0^2/2$ ($\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3$)

- *Coherently* oscillating field, since cold ($E_\phi \approx m_\phi c^2$)

- $\Delta E_\phi / E_\phi \sim \langle v_\phi^2 \rangle / c^2 \sim 10^{-6} \Rightarrow \tau_{\text{coh}} \sim 2\pi / \Delta E_\phi \sim 10^6 T_{\text{osc}}$

- *Classical* field for $m_\phi \lesssim 1 \text{ eV}$, since $n_\phi (\lambda_{\text{dB,}\phi}/2\pi)^3 \gg 1$

- $10^{-21} \text{ eV} \lesssim m_\phi \lesssim 1 \text{ eV} \iff 10^{-7} \text{ Hz} \lesssim f \lesssim 10^{14} \text{ Hz}$

 - Lyman-α forest measurements [suppression of structures for $L \lesssim O(\lambda_{\text{dB,}\phi})$]

Low-mass Spin-0 Dark Matter

Dark Matter

Scalars (Dilatons):
\[\phi \rightarrow +\phi \]

Pseudoscalars (Axions):
\[\phi \rightarrow -\phi \]

→ Time-varying fundamental constants
- Atomic clocks
- Cavities and interferometers
- Fifth-force searches
- Astrophysics (e.g., BBN)

→ Time-varying spin-dependent effects
- Co-magnetometers
- Nuclear magnetic resonance
- Torsion pendula
Low-mass Spin-0 Dark Matter

Scalors (Dilatons):
\[\phi \xrightarrow{P} +\phi \]

Pseudoscalars (Axions):
\[\phi \xrightarrow{P} -\phi \]

→ Time-varying fundamental constants
 - Atomic clocks
 - Cavities and interferometers
 - Fifth-force searches
 - Astrophysics (e.g., BBN)

→ Time-varying spin-dependent effects
 - Co-magnetometers
 - Nuclear magnetic resonance
 - Torsion pendula

• fifth-force searches
• astrophysics (e.g., BBN)
Dark Matter-Induced Cosmological Evolution of the Fundamental Constants

[Stadnik, Flambaum, *PRL* 114, 161301 (2015); *PRL* 115, 201301 (2015)],

[Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* 98, 064051 (2018)]
Dark Matter-Induced Cosmological Evolution of the Fundamental Constants

[Stadnik, Flambaum, *PRL* 114, 161301 (2015); *PRL* 115, 201301 (2015)],
[Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* 98, 064051 (2018)]

\[\mathcal{L}_\gamma = \frac{\phi}{\Lambda_\gamma} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \Rightarrow \frac{\delta \alpha}{\alpha} \approx \frac{\phi_0 \cos(m_\phi t)}{\Lambda_\gamma} \]
Dark Matter-Induced Cosmological Evolution of the Fundamental Constants

[Stadnik, Flambaum, *PRL* 114, 161301 (2015); *PRL* 115, 201301 (2015)],
[Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* 98, 064051 (2018)]

\[
\mathcal{L}_\gamma = \frac{\phi}{\Lambda_\gamma} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \implies \frac{\delta \alpha}{\alpha} \approx \frac{\phi_0 \cos(m_\phi t)}{\Lambda_\gamma}
\]

\[
\mathcal{L}_f = -\frac{\phi}{\Lambda_f} m_f \bar{f} f \implies \frac{\delta m_f}{m_f} \approx \frac{\phi_0 \cos(m_\phi t)}{\Lambda_f}
\]
Dark Matter-Induced Cosmological Evolution of the Fundamental Constants

[Stadnik, Flambaum, *PRL* 114, 161301 (2015); *PRL* 115, 201301 (2015)],
[Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* 98, 064051 (2018)]

\[
\mathcal{L}_\gamma = \frac{\phi}{\Lambda_\gamma} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \implies \frac{\delta \alpha}{\alpha} \approx \frac{\phi_0 \cos(m_\phi t)}{\Lambda_\gamma}
\]

\[
\mathcal{L}_f = -\frac{\phi}{\Lambda_f} m_f \bar{f} f \implies \frac{\delta m_f}{m_f} \approx \frac{\phi_0 \cos(m_\phi t)}{\Lambda_f}
\]

[Stadnik, Flambaum, *PRL* 114, 161301 (2015); *PRA* 93, 063630 (2016)]

Solid material

\[L \sim N a_B = N/(m_e \alpha)\]
Dark Matter-Induced Cosmological Evolution of the Fundamental Constants

[Stadnik, Flambaum, *PRL* 114, 161301 (2015); *PRL* 115, 201301 (2015)],
[Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* 98, 064051 (2018)]

\[
L_\gamma = \frac{\phi}{\Lambda_\gamma} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \implies \frac{\delta \alpha}{\alpha} \approx \frac{\phi_0 \cos(m_\phi t)}{\Lambda_\gamma}
\]

\[
L_f = -\frac{\phi}{\Lambda_f} m_f \bar{f} f \implies \frac{\delta m_f}{m_f} \approx \frac{\phi_0 \cos(m_\phi t)}{\Lambda_f}
\]

[Stadnik, Flambaum, *PRL* 114, 161301 (2015); *PRA* 93, 063630 (2016)]

Solid material

\[
\frac{\delta L(t)}{L} \approx -\frac{\delta \alpha(t)}{\alpha} - \frac{\delta m_e(t)}{m_e}
\]

\[
L \sim N_{a_B} = N/(m_{e\alpha})
\]
Cavity-Based Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

Solid material

$L_{\text{free}} \sim N\alpha_B = N/(m_e\alpha)$
Cavity-Based Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

[Stadnik, Flambaum, *PRL* 114, 161301 (2015); *PRA* 93, 063630 (2016)]

Solid material

$\ell_{\text{free}} \sim N a_B = N / (m_e \alpha)$

Electronic transition

$\Delta E = \hbar \omega_{\text{atom}}$

$\hbar \omega_{\text{atom}} \sim e^2 / a_B$

$\Phi = \frac{\omega_{\text{atom}} \ell_{\text{free}}}{c} \propto \left(\frac{e^2}{a_B \hbar} \right) \left(\frac{N a_B}{c} \right) = N \alpha$

$\Rightarrow \frac{\delta \Phi}{\Phi} \approx \frac{\delta \alpha}{\alpha}$
Cavity-Based Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

Solid material

![Solid material](image)

Electronic transition

![Electronic transition](image)

$\Delta E = \hbar \omega_{\text{atom}}$

$L_{\text{free}} \sim Na_B = N/(m_e \alpha)$

$\hbar \omega_{\text{atom}} \sim e^2/a_B$

- **Sr/ULE cavity (Torun):** [Wcislo et al., *Nature Astronomy* **1**, 0009 (2016)]
- **Sr/Si cavity (JILA):** [Robinson, Ye et al., *Bulletin APS*, H06.00005 (2018)]
- **Various (global network):** [Wcislo et al., *Sci. Adv.* **4**, eaau4869 (2018)]
- **Sr$^+/ULE$ cavity (Weizmann):** [Aharony et al., arXiv:1902.02788]
- **Cs/cavity (Mainz):** [Antypas et al., *PRL* **123**, 141102 (2019)]
Constraints on Linear Interaction of Scalar Dark Matter with the Photon

Cavity-Based Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

[Stadnik, Flambaum, PRL 114, 161301 (2015); PRA 93, 063630 (2016)]

Solid material

Freely-suspended mirrors

cf.

$L_{\text{free}} \sim N a_B = N/(m_e \alpha)$

$L_{\text{fixed}} \approx \text{const.}$

$\Phi \propto L_{\text{free}} \propto a_B \implies \frac{\delta \Phi}{\Phi} \approx -\frac{\delta \alpha}{\alpha} - \frac{\delta m_e}{m_e}$
Cavity-Based Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

[Stadnik, Flambaum, PRL 114, 161301 (2015); PRA 93, 063630 (2016)]

Solid material

\[L_{\text{free}} \sim N a_B = N / (m_e \alpha) \]

Freely-suspended mirrors

\[L_{\text{fixed}} \approx \text{const.} \]

\[\Phi \propto L_{\text{free}} \propto a_B \implies \frac{\delta \Phi}{\Phi} \approx -\frac{\delta \alpha}{\alpha} - \frac{\delta m_e}{m_e} \]

cf.

\[\frac{\delta \Phi}{\Phi} \approx \frac{\delta \alpha}{\alpha} \]
Laser Interferometry Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

[Stadnik, Grote, Phys. Rev. Research 1, 033187 (2019)]

Michelson interferometer (GEO 600)
Laser Interferometry Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

- Geometric asymmetry from beam-splitter: \(\delta(L_x - L_y) \sim \delta(nI) \)
Laser Interferometry Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

- Geometric asymmetry from beam-splitter: $\delta(L_x - L_y) \sim \delta(nl)$
Laser Interferometry Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

• Geometric asymmetry from beam-splitter: $\delta(L_x - L_y) \sim \delta(nl)$

• Both broadband and resonant narrowband searches possible: $f_{DM} \approx f_{vibr,BS} \sim v_{sound} / l$, $Q \sim 10^6$ enhancement
Michelson vs Fabry-Perot-Michelson Interferometers

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

Michelson interferometer
(GEO 600, Fermilab holometer)

\[
\delta(L_x - L_y)_{BS} \sim \delta(nl)
\]

Fabry-Perot-Michelson interferometer
(LIGO, VIRGO, KAGRA)

\[
N_{\text{eff}} \sim \text{few} \times 10^2
\]

\[
\delta(L_x - L_y)_{BS} \sim \delta(nl) / N_{\text{eff}}
\]
Michelson vs Fabry-Perot-Michelson Interferometers

\[\delta(L_x - L_y)_{BS} \sim \delta(nl) \]

\[\delta(L_x - L_y) \approx \delta(\Delta w) \]

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]
Linear Interaction of Scalar Dark Matter with the Electron

Logarithmic plot showing the interaction of scalar dark matter with the electron. The plot includes regions labeled as Fifth-force searches (non-DM), LIGO, and Holometer. The y-axis is labeled as $\log_{10} \left(\frac{\text{GeV}}{\Lambda_e} \right)$ and the x-axis is labeled as $\log_{10} \left(\frac{m_\phi}{\text{eV}} \right)$. The plot compares different experimental setups, including GEO 600.
Linear Interaction of Scalar Dark Matter with the Electron
Linear Interaction of Scalar Dark Matter with the Electron

- Fifth-force searches (non-DM)
- LIGO (modified)
- Holometer (narrowband)
- Cross-correlation between pair of detectors

Graph showing \(\log_{10} \left(\frac{m_\phi}{\text{eV}} \right) \) vs. \(\log_{10} \left(\frac{\text{GeV}}{\Lambda_e} \right) \) with curves for GEO 600 and other detectors.
Summary

1. Electroweak Phenomena
 - **Cs PNC experiments**: electroweak theory (PNC effects), nuclear anapole moments, new Z-like bosons
 - **Muonium hyperfine ground-state spectroscopy**: electroweak theory (PC effects), highly-singular PC forces

2. Electric Dipole Moments
 - **EDM experiments in paramagnetic molecules**: sensitive probes of hadronic CP violation, in addition to leptonic CP violation

 - **Optical interferometers and cavities**: sensitive probes of apparent oscillations in α and m_e induced by oscillating scalar DM field
Back-Up Slides
Temporal Coherence

- Low-mass spin-0 particles form a coherently oscillating classical field \(\phi(t) = \phi_0 \cos(m_\phi c^2 t/\hbar) \), with energy density \(\langle \rho_\phi \rangle \approx m_\phi^2 \phi_0^2/2 \) (\(\rho_{DM,\text{local}} \approx 0.4 \text{ GeV/cm}^3 \))

- \(\Delta E_\phi/E_\phi \sim \langle v_\phi^2 \rangle/c^2 \sim 10^{-6} \Rightarrow \tau_{coh} \sim 2\pi/\Delta E_\phi \sim 10^6 T_{osc} \)
Dark Matter-Induced Cosmological Evolution of the Fundamental Constants

[Stadnik, Flambaum, *PRL* 114, 161301 (2015); *PRL* 115, 201301 (2015)],
[Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* 98, 064051 (2018)]

\[
\mathcal{L}_\gamma = \frac{\phi}{\Lambda_\gamma} \frac{F_{\mu\nu}F^{\mu\nu}}{4} \quad \Rightarrow \quad \frac{\delta \alpha}{\alpha} \approx \frac{\phi_0 \cos(m_\phi t)}{\Lambda_\gamma}
\]

\[
\mathcal{L}_f = -\frac{\phi}{\Lambda_f} m_f \bar{f} f \quad \Rightarrow \quad \frac{\delta m_f}{m_f} \approx \frac{\phi_0 \cos(m_\phi t)}{\Lambda_f}
\]

\[
\phi = \phi_0 \cos(m_\phi t - \mathbf{p}_\phi \cdot \mathbf{x}) \quad \Rightarrow \quad F \propto \mathbf{p}_\phi \sin(m_\phi t)
\]

\[
\left\{ \begin{array}{l}
\mathcal{L}'_\gamma = \frac{\phi^2}{(\Lambda'_\gamma)^2} \frac{F_{\mu\nu}F^{\mu\nu}}{4} \\
\mathcal{L}'_f = -\frac{\phi^2}{(\Lambda'_f)^2} m_f \bar{f} f
\end{array} \right.
\quad \Rightarrow \quad \frac{\delta \alpha}{\alpha} \propto \frac{\delta m_f}{m_f} \propto \delta \rho_\phi
\]

\[
F \propto \nabla \rho_\phi
\]
Consider quadratic couplings of an oscillating classical scalar field, $\varphi(t) = \varphi_0 \cos(m_\varphi t)$, with SM fields.

\[
\mathcal{L}_f = -\frac{\phi^2}{(\Lambda'_f)^2} m_f \bar{f} f \quad \text{c.f.} \quad \mathcal{L}_f^{\text{SM}} = -m_f \bar{f} f \implies m_f \rightarrow m_f \left[1 + \frac{\phi^2}{(\Lambda'_f)^2} \right]
\]

\[
\Rightarrow \frac{\delta m_f}{m_f} = \frac{\phi_0^2}{(\Lambda'_f)^2} \cos^2(m_\varphi t) = \begin{cases} \frac{\phi_0^2}{2(\Lambda'_f)^2} & \text{red} \\ \frac{\phi_0^2}{2(\Lambda'_f)^2} \cos(2m_\varphi t) & \text{blue} \end{cases}
\]

\[
\rho_\varphi = \frac{m_\varphi^2 \phi_0^2}{2} \implies \phi_0^2 \propto \rho_\varphi
\]
Dark Matter-Induced Cosmological Evolution of the Fundamental Constants

[Stadnik, Flambaum, *PRL* 114, 161301 (2015); *PRL* 115, 201301 (2015)],
[Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* 98, 064051 (2018)]

Consider *quadratic couplings* of an oscillating classical scalar field, \(\phi(t) = \phi_0 \cos(m_\phi t) \), with SM fields.

\[
\mathcal{L}_f = -\frac{\phi^2}{(\Lambda'_f)^2} m_f \bar{f} f \quad \text{c.f.} \quad \mathcal{L}_{f}^{SM} = -m_f \bar{f} f \quad \Rightarrow \quad m_f \rightarrow m_f \left[1 + \frac{\phi^2}{(\Lambda'_f)^2} \right]
\]

\[
\Rightarrow \quad \frac{\delta m_f}{m_f} = \frac{\phi_0^2}{(\Lambda'_f)^2} \cos^2(m_\phi t) = \frac{\phi_0^2}{2(\Lambda'_f)^2} + \frac{\phi_0^2}{2(\Lambda'_f)^2} \cos(2m_\phi t)
\]

`Slow' drifts [Astrophysics (high \(\rho_{DM} \)): BBN, CMB]

+ Gradients [Fifth forces]

Oscillating variations [Laboratory (high precision)]
Consider the effect of a massive body (e.g., Earth) on the scalar DM field.

Linear couplings $(\phi \bar{\chi} \chi)$

\[\phi = \phi_0 \cos(m_\phi t) - A \frac{e^{-m_\phi r}}{r} \]

Quadratic couplings $(\phi^2 \bar{\chi} \chi)$

\[\phi = \phi_0 \cos(m_\phi t) \left(1 - \frac{B}{r}\right) \]

Gradients + screening/amplification
Fifth Forces: Linear vs Quadratic Couplings

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider the effect of a massive body (e.g., Earth) on the scalar DM field

Linear couplings ($\phi \bar{X} X$)

\[
\phi = \phi_0 \cos(m_\phi t) - A \frac{e^{-m_\phi r}}{r}
\]

Quadratic couplings ($\phi^2 \bar{X} X$)

\[
\phi = \phi_0 \cos(m_\phi t) \left(1 - \frac{B}{r}\right) - C \frac{e^{-2m_\phi r}}{r^3}
\]

Gradients + screening/amplification
Fifth Forces: Linear vs Quadratic Couplings
[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider the effect of a massive body (e.g., Earth) on the scalar DM field

Linear couplings ($\phi \dot{X} X$)

$$\phi = \phi_0 \cos(m_\phi t) - A \frac{e^{-m_\phi r}}{r}$$

Quadratic couplings ($\phi^2 \ddot{X} X$)

$$\phi = \phi_0 \cos(m_\phi t) \left(1 - \frac{B}{r}\right) - C \frac{e^{-2m_\phi r}}{r^3}$$

Motional gradients: $\phi_0 \cos(m_\phi t - \mathbf{p}_\phi \cdot \mathbf{x})$

“Fifth-force” experiments: torsion pendula, atom interferometry

Gradients + screening/amplification
Constraints on Linear Interaction of Scalar Dark Matter with the Electron
Quartic Self-Interaction of Scalar
Constraints on Linear Interaction of Scalar Dark Matter with the Higgs Boson

Rb/Cs constraints:
[Stadnik, Flambaum, PRA 94, 022111 (2016)]
2 – 3 orders of magnitude improvement!

\[
\mathcal{L}_H = -A\phi H^\dagger H
\]
BBN Constraints on ‘Slow’ Drifts in Fundamental Constants due to Dark Matter

- Largest effects of DM in early Universe (highest ρ_{DM})
- Big Bang nucleosynthesis ($t_{\text{weak}} \approx 1\text{s} - t_{\text{BBN}} \approx 3\text{ min}$)
- Primordial ^4He abundance sensitive to n/p ratio (almost all neutrons bound in ^4He after BBN)

\[
\frac{\Delta Y_p(^4\text{He})}{Y_p(^4\text{He})} \approx \frac{\Delta (n/p)_{\text{weak}}}{(n/p)_{\text{weak}}} - \Delta \left[\int_{t_{\text{weak}}}^{t_{\text{BBN}}} \Gamma_n(t) dt \right]
\]

\[
p + e^- \iff n + \nu_e
\]

\[
n + e^+ \iff p + \bar{\nu}_e
\]

\[
n \rightarrow p + e^- + \bar{\nu}_e
\]
Back-Reaction Effects in BBN

[Sörensen, Sibiryakov, Yu, PRELIMINARY – In preparation]
Constraints on Quadratic Interaction of Scalar Dark Matter with the Photon

Clock/clock + BBN constraints: [Stadnik, Flambaum, *PRL* 115, 201301 (2015); *PRA* 94, 022111 (2016)]; MICROSCOPE + Eöt-Wash constraints: [Hees et al., *PRD* 98, 064051 (2018)]

15 orders of magnitude improvement!
Oscillating Electric Dipole Moments

Nucleons: [Graham, Rajendran, *PRD* 84, 055013 (2011)]

Atoms and molecules: [Stadnik, Flambaum, *PRD* 89, 043522 (2014)]

\[
\mathcal{L}_g = \frac{C_G a_0 \cos(m_a t)}{f_a} \frac{g^2}{32\pi^2} G \tilde{G}
\]

Nucleon EDMs

CP-violating intranuclear forces

In nuclei, *tree-level* CP-violating intranuclear forces dominate over *loop-induced* nucleon EDMs [loop factor = \(1/(8\pi^2)\)].