
Yevgeny Stadnik

“New Physics on the Low-Energy Precision Frontier”, CERN, January 2020

Testing the Standard Model and Probing               

New Physics with Low-Energy Atomic, 

Molecular and Optical Experiments

Kavli Fellow

Kavli IPMU, University of Tokyo, Japan



Outline

1. Electroweak Phenomena

2. Electric Dipole Moments

3. Ultra-Low-Mass Dark Matter



Outline

1. Electroweak Phenomena

2. Electric Dipole Moments

3. Ultra-Low-Mass Dark Matter



EW Phenomena in Atoms (PNC)

Electromagnetic

Parity conserving,

long range



Electromagnetic Weak neutral current

Parity conserving,

long range

EW Phenomena in Atoms (PNC)

Parity violating,

short range (~10-18 m)



Γ± = 

Electromagnetic Weak neutral current

Parity conserving,

long range

Parity violating,

short range (~10-18 m)

±

2

EW Phenomena in Atoms (PNC)



Γ± = 

Electromagnetic Weak neutral current

Parity conserving,

long range

±

2

Flip sign by reversing a P-odd invariant, e.g. [E · (ε × B)](ε · B)

EW Phenomena in Atoms (PNC)

Parity violating,

short range (~10-18 m)



Γ± = 

Electromagnetic Weak neutral current

Parity conserving,

long range

±

2

Flip sign by reversing a P-odd invariant, e.g. [E · (ε × B)](ε · B)

Measure parity-nonconserving amplitude EPNC = Γ+ – Γ–

=>  Determine nuclear weak charge QW = –N + Z [1 – 4sin2(θW)] ≈ –N
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[Barkov, Zolotorev, JETP Lett. 27, 357 (1978); Pis’ma Zh. Eksp. Teor. Fiz. 27, 379 (1978)]
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Theory: [Dzuba, Berengut, Flambaum, Roberts, PRL 109, 203003 (2012)]
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Parity violation in weak neutral current interactions first discovered 

in bismuth optical rotation experiments in Novosibirsk

Current “gold standard” – caesium beam experiment in Boulder: 

EW Phenomena in Atoms (PNC)

Bounds on new physics:

Extra standard-type Z boson: MZ′ > 700 GeV

[Dzuba, Berengut, Flambaum, Roberts, PRL 109, 203003 (2012)]

Extra generic spin-1 boson:

| | < 3×10-14, MV < 1 keV;     | | / < 4×10-8 GeV-2, MV > 200 keV

[Dzuba, Flambaum, Stadnik, PRL 119, 223201 (2017)]
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κa determined by parity-violating 

intranuclear forces

Hanapole = e α ·aδ(r)

Measure                               

nuclear-spin-dependent         

PNC amplitude
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Experiment: [Wood et al., Science 275, 1759 (1997)]

Theory: [Flambaum, Murray, PRC 56, 1641 (1997)]
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in caesium beam experiment in Boulder: 

Bounds on new physics:

Extra generic spin-1 boson:

| | < 6×10-8, MV < 30 MeV;     | | / < 2×10-5 GeV-2, MV > 200 MeV

[Dzuba, Flambaum, Stadnik, PRL 119, 223201 (2017)]

New experiments targeting observation of anapole moments                       

in odd-neutron nuclei (mainly sensitive to gn): 
137BaF, 171,173Yb
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Ground-state hyperfine interval in muonium (e-μ+ bound state): 

EW Phenomena in Atoms (PC)

νexp = 4463302776(51) Hz  cf.  νtheory = 4463302868(271)* Hz

* u[νtheory(me/mμ)] ≈ 260 Hz,  u[νtheory(4
th-order QED)] ≈ 85 Hz,  u[νtheory(others)] ≲ O (Hz)

Weak

δνweak = -65 Hz, independent of sin2(θW) at LO

New experiments and calculations targeting ~ O (10) Hz precision level              

Experiment: [Liu et al., PRL 82, 711 (1999)]

Theory (summary): [CODATA, Rev. Mod. Phys. 88, 035009 (2016)]

[Eides, PRA 53, 2953 (1996)]
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Enhanced Sensitivity to Highly-Singular 

Parity-Conserving Forces in Muonium

cf. 

[Stadnik, PRL 120, 223202 (2018)]

δνν ~                            ~ Hz
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Motivation for EDM Experiments

• Observed predominance of matter over antimatter 

in Universe

• In hot big bang model, require sources of CP 

violation to produce this asymmetry

• Known sources of CP violation in the standard 

model (δCKM and θQCD ≈ 0) insufficient

• EDM experiments are high-precision low-energy 

probes of possible new sources of CP violation
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Atomic Electric Dipole Moments

Flip sign by reversing the P,T-odd invariant E · B



Hadronic CP Violation in Diamagnetic Atoms
Nucleon EDMs: [Crewther, Di Vecchia, Veneziano, Witten, PLB 88, 123 (1979)]

Intranuclear forces: [Haxton, Henley, PRL 51, 1937 (1983)],

[O. Sushkov, Flambaum, Khriplovich, JETP 60, 873 (1984)]
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Hadronic CP Violation in Diamagnetic Atoms
Nucleon EDMs: [Crewther, Di Vecchia, Veneziano, Witten, PLB 88, 123 (1979)]

Intranuclear forces: [Haxton, Henley, PRL 51, 1937 (1983)],

[O. Sushkov, Flambaum, Khriplovich, JETP 60, 873 (1984)]

Nucleon EDMs CP-violating intranuclear forces

In nuclei, tree-level CP-violating intranuclear forces dominate over                                                   

loop-induced nucleon EDMs [loop factor = 1/(8π2)].

Illustrative example:



Screening of Hadronic CP Violation in Atoms
[Schiff, Phys. Rev. 132, 2194 (1963)]

Schiff’s Theorem: “In a neutral atom made up of point-like non-

relativistic charged particles (interacting only electrostatically), the 

constituent EDMs are screened from an external electric field.”
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[Sandars, PRL 19, 1396 (1967)],

[O. Sushkov, Flambaum, Khriplovich, JETP 60, 873 (1984)]

Lifting of Schiff’s Theorem

In real (heavy) atoms: Incomplete screening of external electric field 

due to finite nuclear size, parametrised by nuclear Schiff moment.
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Leptonic CP Violation in Paramagnetic Molecules

Over the past decade, molecular experiments have improved 

sensitivity to electron EDM de by more than 100-fold:

ThO bound: |de| < 10-29 e cm

[Andreev et al. (ACME), Nature 562, 355 (2018)]

Sensitivity boost comes from large effective electric field seen by 

unpaired electrons: Eeff ~ 10–100 GV/cm ~ 105Elab,max

Small magnetic moment in 3Δ1 ThO state: |μThO(3Δ1)| ~ 10-2μB

=>  Less sensitive to (stray) magnetic fields

What about sensitivity to hadronic CP violation?
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Hadronic CP-violating effects arise at 2-loop level, O (A) enhanced
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Hadronic CP Violation in Paramagnetic Molecules

Hadronic CP-violating effects arise at 2-loop level, O (A) enhanced

[Flambaum, Pospelov, Ritz, Stadnik, arXiv:1912.13129]

Interaction of one of photons with nucleus is magnetic =>  no Schiff screening 

Example – θQCD term:

π0,η contributions:                          

opposite sign

LO: O

p,n contributions: same sign

For Z ~ 80, A ~ 200: CSP(θ) ≈ [0.1LO + 1.0NLO + 1.7(μd)] × 10-2 θ ≈ 0.03 θ

NLO: O

μ

μ – d: O

μ
d



Bounds on Hadronic CP Violation Parameters

|θ|ThO < 3× 10-8

|θ|n < 2 ×10-10

|θ|Hg < 1.5 × 10-10

ThO bounds: [Flambaum, Pospelov, Ritz, Stadnik, arXiv:1912.13129]
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|dp|Xe < 3× 10-22 e cm

| |ThO < 4×10-10

| |n < 1× 10-10

| |Hg < 1×10-12

| |Xe < 7×10-8
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Bounds on Hadronic CP Violation Parameters

|θ|ThO < 3× 10-8

|θ|n < 2 ×10-10

|θ|Hg < 1.5 × 10-10

ThO bounds: [Flambaum, Pospelov, Ritz, Stadnik, arXiv:1912.13129]

|dp|ThO < 2× 10-23 e cm

|dp|Hg < 2×10-25 e cm

|dp|Xe < 3× 10-22 e cm

Current bounds from molecules are ~10–100 times weaker than from Hg & n,                                    

but are ~10–100 times stronger than bounds from Xe

Clean bound on , unlike from Hg Schiff moment (where nuclear uncertainties                

can formally nullify sensitivity to          and derived quantities, e.g.              )

| |ThO < 4×10-10

| |n < 1× 10-10

| |Hg < 1×10-12

| |Xe < 7×10-8
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• Low-mass spin-0 particles form a coherently oscillating 

classical field φ(t) = φ0 cos(mφc2t/ℏ), with energy density

<ρφ> ≈ mφ
2φ0

2/2 (ρDM,local ≈ 0.4 GeV/cm3)

• Coherently oscillating field, since cold (Eφ ≈ mφc2)

• ΔEφ /Eφ ~ <vφ
2>/c2 ~ 10-6  => τcoh ~ 2π/ΔEφ ~ 106Tosc

• Classical field for mφ ≲ 1 eV, since nφ(λdB,φ/2π)3 >> 1

• 10-21 eV ≲ mφ ≲ 1 eV <=> 10-7 Hz ≲ f ≲ 1014 Hz

• Wave-like signatures [cf. particle-like signatures of WIMP DM]

Lyman-α forest measurements [suppression of structures for L ≲ O (λdB,φ)]
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Cavity-Based Searches for Oscillating Variations in 

Fundamental Constants due to Dark Matter

ΔE = ℏωatom

g

e

Solid material Electronic transition

cf.

ℏωatom ~ e2/aBLfree ~ NaB = N/(meα)

• Sr/ULE cavity (Torun): [Wcislo et al., Nature Astronomy 1, 0009 (2016)]

• Sr/Si cavity (JILA): [Robinson, Ye et al., Bulletin APS, H06.00005 (2018)]

• Various (global network): [Wcislo et al., Sci. Adv. 4, eaau4869 (2018)]

• Sr+/ULE cavity (Weizmann): [Aharony et al., arXiv:1902.02788]

• Cs/cavity (Mainz): [Antypas et al., PRL 123, 141102 (2019)]



Constraints on Linear Interaction of 

Scalar Dark Matter with the Photon
Clock/clock constraints: [Van Tilburg et al., PRL 115, 011802 (2015)], [Hees et al., PRL 117, 061301 

(2016)]; Clock/cavity constraints: [Robinson, Ye et al., Bulletin APS, H06.00005 (2018)]



[Stadnik, Flambaum, PRL 114, 161301 (2015); PRA 93, 063630 (2016)]

Cavity-Based Searches for Oscillating Variations in 

Fundamental Constants due to Dark Matter

Solid material Freely-suspended mirrors

cf.

Lfixed ≈ const.Lfree ~ NaB = N/(meα)
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Cavity-Based Searches for Oscillating Variations in 

Fundamental Constants due to Dark Matter

Solid material Freely-suspended mirrors

cf.

Lfixed ≈ const.Lfree ~ NaB = N/(meα)

cf.



[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

Laser Interferometry Searches for Oscillating Variations 

in Fundamental Constants due to Dark Matter

Michelson interferometer (GEO 600)



[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]
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[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

Laser Interferometry Searches for Oscillating Variations 

in Fundamental Constants due to Dark Matter

• Geometric asymmetry from beam-splitter: δ(Lx - Ly) ~ δ(nl )

• Both broadband and resonant narrowband searches 

possible: fDM ≈ fvibr,BS ~ vsound/l, Q ~ 106 enhancement



δ(Lx - Ly)BS ~ δ(nl )

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

Michelson vs Fabry-Perot-Michelson Interferometers

δ(Lx - Ly)BS ~ δ(nl )/Neff

Michelson interferometer

(GEO 600, Fermilab holometer)

Fabry-Perot-Michelson interferometer 

(LIGO, VIRGO, KAGRA)

Neff ~ few x 102



δ(Lx - Ly)BS ~ δ(nl )

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

Michelson vs Fabry-Perot-Michelson Interferometers

Change thickness 

of arm mirrors by 

amount Δw

δ(Lx - Ly) ≈ δ(Δw)

Michelson interferometer

(GEO 600, Fermilab holometer)

Fabry-Perot-Michelson interferometer 

(LIGO, VIRGO, KAGRA)
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Summary

1. Electroweak Phenomena

- Cs PNC experiments: electroweak theory (PNC effects), nuclear 

anapole moments, new Z-like bosons

- Muonium hyperfine ground-state spectroscopy: electroweak 

theory (PC effects), highly-singular PC forces

2. Electric Dipole Moments

- EDM experiments in paramagnetic molecules: sensitive probes of 

hadronic CP violation, in addition to leptonic CP violation

3. Ultra-Low-Mass Dark Matter

- Optical interferometers and cavities: sensitive probes of apparent 

oscillations in α and me induced by oscillating scalar DM field



Back-Up Slides



Temporal Coherence
• Low-mass spin-0 particles form a coherently oscillating 

classical field φ(t) = φ0 cos(mφc2t/ℏ), with energy density

<ρφ> ≈ mφ
2φ0

2/2 (ρDM,local ≈ 0.4 GeV/cm3)

• ΔEφ /Eφ ~ <vφ
2>/c2 ~ 10-6  => τcoh ~ 2π/ΔEφ ~ 106Tosc

Probability distribution function of φ0

φ0

Evolution of φ0 with time

t/τcoh



Dark Matter-Induced Cosmological 

Evolution of the Fundamental Constants
[Stadnik, Flambaum, PRL 114, 161301 (2015); PRL 115, 201301 (2015)],

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]



Dark Matter-Induced Cosmological 

Evolution of the Fundamental Constants

Consider quadratic couplings of an oscillating classical 

scalar field, φ(t) = φ0 cos(mφt), with SM fields.

[Stadnik, Flambaum, PRL 114, 161301 (2015); PRL 115, 201301 (2015)],

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]



Dark Matter-Induced Cosmological 

Evolution of the Fundamental Constants

Consider quadratic couplings of an oscillating classical 

scalar field, φ(t) = φ0 cos(mφt), with SM fields.

‘Slow’ drifts [Astrophysics     

(high ρDM): BBN, CMB]                  

+ Gradients [Fifth forces]

Oscillating variations

[Laboratory (high precision)]

[Stadnik, Flambaum, PRL 114, 161301 (2015); PRL 115, 201301 (2015)],

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]



Linear couplings (φX̄X) Quadratic couplings (φ2X̄X)

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider the effect of a massive body (e.g., Earth) on 

the scalar DM field

Gradients + screening/amplification

Fifth Forces: Linear vs Quadratic Couplings
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Linear couplings (φX̄X) Quadratic couplings (φ2X̄X)

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider the effect of a massive body (e.g., Earth) on 

the scalar DM field

Gradients + screening/amplification

Fifth Forces: Linear vs Quadratic Couplings

“Fifth-force” experiments: torsion 

pendula, atom interferometry

Motional gradients: φ0 cos(mφt - pφ·x)



Constraints on Linear Interaction of 

Scalar Dark Matter with the Electron



Quartic Self-Interaction of Scalar



Constraints on Linear Interaction of 

Scalar Dark Matter with the Higgs Boson
Rb/Cs constraints:

[Stadnik, Flambaum, PRA 94, 022111 (2016)]     

2 – 3 orders of magnitude improvement!



BBN Constraints on ‘Slow’ Drifts in          

Fundamental Constants due to Dark Matter

• Largest effects of DM in early Universe (highest ρDM)

• Big Bang nucleosynthesis (tweak ≈ 1s – tBBN ≈ 3 min)

• Primordial 4He abundance sensitive to n/p ratio             

(almost all neutrons bound in 4He after BBN)

[Stadnik, Flambaum, PRL 115, 201301 (2015)]



Back-Reaction Effects in BBN
[Sörensen, Sibiryakov, Yu, PRELIMINARY – In preparation]



Constraints on Quadratic Interaction of 

Scalar Dark Matter with the Photon
Clock/clock + BBN constraints: [Stadnik, Flambaum, PRL 115, 201301 (2015); PRA 94, 022111 

(2016)]; MICROSCOPE + Eöt-Wash constraints: [Hees et al., PRD 98, 064051 (2018)]

15 orders of magnitude improvement!



Oscillating Electric Dipole Moments
Nucleons: [Graham, Rajendran, PRD 84, 055013 (2011)]

Atoms and molecules: [Stadnik, Flambaum, PRD 89, 043522 (2014)]

Nucleon EDMs CP-violating intranuclear forces

In nuclei, tree-level CP-violating intranuclear forces dominate over 

loop-induced nucleon EDMs [loop factor = 1/(8π2)].


