Testing the Standard Model and Probing New Physics with Low-Energy Atomic, Molecular and Optical Experiments

Yevgeny Stadnik

Kavli Fellow

Kavli IPMU, University of Tokyo, Japan

“New Physics on the Low-Energy Precision Frontier”, CERN, January 2020
Outline

1. Electroweak Phenomena

2. Electric Dipole Moments

Outline

1. Electroweak Phenomena

2. Electric Dipole Moments

EW Phenomena in Atoms (PNC)

Electromagnetic

Parity conserving, long range
EW Phenomena in Atoms (PNC)

Electromagnetic

Parity conserving, long range

\[e \rightarrow e \]

\[N \rightarrow N \]

Weak neutral current

Parity violating, short range (~10^{-18} m)

\[e \rightarrow e \]

\[N \rightarrow N \]

\[Z \]
EW Phenomena in Atoms (PNC)

\[\Gamma_\pm = \begin{pmatrix}
 \text{Electromagnetic} \\
 e \quad e \\
 N \quad N \\
\end{pmatrix} + \begin{pmatrix}
 \text{Weak neutral current} \\
 e \quad e \\
 N \quad N \\
\end{pmatrix} \pm \begin{pmatrix}
 \text{Parity violating, short range (~10}^{-18}\text{ m)} \\
 e \quad e \\
 N \quad N \\
\end{pmatrix}

2
Electromagnetic

Parity conserving,
long range

Weak neutral current

Parity violating,
short range (~10^{-18} m)

$\Gamma_{\pm} = \pm$ Flip sign by reversing a P-odd invariant, e.g. $[\mathbf{E} \cdot (\mathbf{\varepsilon} \times \mathbf{B})](\mathbf{\varepsilon} \cdot \mathbf{B})$
Electromagnetic

Parity conserving, long range

weak neutral current

Parity violating, short range (~10^{-18} m)

Flip sign by reversing a P-odd invariant, e.g. $[E \cdot (\varepsilon \times B)](\varepsilon \cdot B)$

Measure parity-nonconserving amplitude $E_{PNC} = \Gamma_+ - \Gamma_-$

=> Determine nuclear weak charge $Q_W = -N + Z[1 - 4\sin^2(\theta_W)] \approx -N$
EW Phenomena in Atoms (PNC)

Parity violation in weak neutral current interactions first discovered in bismuth optical rotation experiments in Novosibirsk

EW Phenomena in Atoms (PNC)

Parity violation in weak neutral current interactions first discovered in bismuth optical rotation experiments in Novosibirsk

[Barkov, Zolotorev, JETP Lett. 27, 357 (1978); Pis’ma Zh. Eksp. Teor. Fiz. 27, 379 (1978)]

Current “gold standard” – caesium beam experiment in Boulder:

$$Q_W(^{133}\text{Cs}) = -72.58(29)_{\text{exp}}^{(32)}_{\text{theory}} \text{ cf. } Q_W(^{133}\text{Cs})_{\text{SM}} = -73.23(2)$$

Experiment: [Wood et al., Science 275, 1759 (1997)]

Theory: [Dzuba, Berengut, Flambaum, Roberts, PRL 109, 203003 (2012)]
EW Phenomena in Atoms (PNC)

Parity violation in weak neutral current interactions first discovered in bismuth optical rotation experiments in Novosibirsk

Current “gold standard” – caesium beam experiment in Boulder:

\[
Q_W(^{133}\text{Cs}) = -72.58(29)_{\text{exp}}(32)_{\text{theory}} \quad \text{cf. } Q_W(^{133}\text{Cs})_{\text{SM}} = -73.23(2)
\]

Experiment: [Wood et al., *Science* **275**, 1759 (1997)]

Theory: [Dzuba, Berengut, Flambaum, Roberts, *PRL* **109**, 203003 (2012)]

Bounds on new physics:

Extra standard-type Z boson: $M_{Z'} > 700 \text{ GeV}$

Extra generic spin-1 boson:

\[
\left| g_e^A g_N^V \right| < 3 \times 10^{-14}, \ M_V < 1 \text{ keV}; \quad \left| g_e^A g_N^V \right|/M_V^2 < 4 \times 10^{-8} \text{ GeV}^{-2}, \ M_V > 200 \text{ keV}
\]

Nuclear Anapole Moments (PNC)

Parity-violating toroidal moment:

\[\mathbf{a} = -\pi \int d^3r \, r^2 \, \mathbf{j}(\mathbf{r}) \propto \kappa_a \mathbf{l} \]
Nuclear Anapole Moments (PNC)

Parity-violating toroidal moment:

\[a = -\pi \int d^3r \, r^2 \, j(r) \propto \kappa_a \, l \]

\(\kappa_a \) determined by parity-violating intranuclear forces
Nuclear Anapole Moments (PNC)

Parity-violating toroidal moment:

\[\mathbf{a} = -\pi \int d^3r \ r^2 \mathbf{j}(\mathbf{r}) \propto \kappa_a \mathbf{l} \]

\(\kappa_a \) determined by parity-violating intranuclear forces

\[H_{\text{anapole}} = e \, \mathbf{a} \cdot \mathbf{a} \, \delta(\mathbf{r}) \]

Measure

nuclear-spin-dependent

PNC amplitude
Nuclear Anapole Moments (PNC)

So far, only observation of nuclear anapole moment in caesium beam experiment in Boulder:

\[\kappa_a (^{133}\text{Cs})_{\text{exp}} = 0.36(6) \text{ cf. } \kappa_a (^{133}\text{Cs})_{\text{theory}} = 0.27(8) \]

Experiment: [Wood et al., Science 275, 1759 (1997)]

Theory: [Flambaum, Murray, PRC 56, 1641 (1997)]
Nuclear Anapole Moments (PNC)

So far, only observation of nuclear anapole moment in caesium beam experiment in Boulder:

\[\kappa_a^{(133\text{Cs})}_{\text{exp}} = 0.36(6) \quad \text{cf.} \quad \kappa_a^{(133\text{Cs})}_{\text{theory}} = 0.27(8) \]

Experiment: [Wood et al., *Science* **275**, 1759 (1997)]

Theory: [Flambaum, Murray, *PRC* **56**, 1641 (1997)]

Bounds on new physics:

Extra generic spin-1 boson:

\[|g^A_P g^V_N| < 6 \times 10^{-8}, \quad M_V < 30 \text{ MeV}; \quad |g^A_P g^V_N|/M_V^2 < 2 \times 10^{-5} \text{ GeV}^{-2}, \quad M_V > 200 \text{ MeV} \]

Nuclear Anapole Moments (PNC)

So far, only observation of nuclear anapole moment in caesium beam experiment in Boulder:

\[\kappa_a (^{133}\text{Cs})_{\text{exp}} = 0.36(6) \quad \text{cf.} \quad \kappa_a (^{133}\text{Cs})_{\text{theory}} = 0.27(8) \]

Experiment: [Wood et al., Science 275, 1759 (1997)]
Theory: [Flambaum, Murray, PRC 56, 1641 (1997)]

Bounds on new physics:

Extra generic spin-1 boson:

\[|g_p^A g_N^V| < 6 \times 10^{-8}, \ M_V < 30 \text{ MeV}; \quad |g_p^A g_N^V|/M_V^2 < 2 \times 10^{-5} \text{ GeV}^{-2}, \ M_V > 200 \text{ MeV} \]

[Dzuba, Flambaum, Stadnik, PRL 119, 223201 (2017)]

New experiments targeting observation of anapole moments in odd-neutron nuclei (mainly sensitive to \(g_n \)): \(^{137}\text{BaF}, \ 171,173\text{Yb}\)
EW Phenomena in Atoms (PC)

Ground-state hyperfine interval in muonium (e−μ+ bound state):

\[\nu_{\text{exp}} = 4463302776(51) \text{ Hz} \quad \text{cf.} \quad \nu_{\text{theory}} = 4463302868(271) \ast \text{ Hz} \]

* \[u[\nu_{\text{theory}}(m_e/m_\mu)] \approx 260 \text{ Hz}, \quad u[\nu_{\text{theory}}(4^{\text{th}}-\text{order QED})] \approx 85 \text{ Hz}, \quad u[\nu_{\text{theory}}(\text{others})] \lesssim \mathcal{O}(\text{Hz}) \]

Experiment: [Liu et al., PRL 82, 711 (1999)]

Theory (summary): [CODATA, Rev. Mod. Phys. 88, 035009 (2016)]
EW Phenomena in Atoms (PC)

Ground-state hyperfine interval in muonium ($e^-\mu^+$ bound state):

$$\nu_{\text{exp}} = 4463302776(51) \text{ Hz \ cf. } \nu_{\text{theory}} = 4463302868(271) \text{ Hz}$$

* $u[\nu_{\text{theory}}(m_e/m_\mu)] \approx 260 \text{ Hz, } u[\nu_{\text{theory}}(4^{\text{th}}-\text{order QED})] \approx 85 \text{ Hz, } u[\nu_{\text{theory}}(\text{others})] \lesssim \mathcal{O}(\text{Hz})$

Experiment: [Liu et al., *PRL* 82, 711 (1999)]

![Diagram](image)

$$\delta \nu_{\text{weak}} = -65 \text{ Hz, independent of } \sin^2(\theta_W) \text{ at LO}$$

[Eides, *PRA* 53, 2953 (1996)]
EW Phenomena in Atoms (PC)

Ground-state hyperfine interval in muonium (e−μ⁺ bound state):

\[\nu_{\text{exp}} = 4463302776(51) \text{ Hz} \quad \text{cf.} \quad \nu_{\text{theory}} = 4463302868(271) \text{ Hz} \]

* \[u[\nu_{\text{theory}}(m_e/m_\mu)] \approx 260 \text{ Hz}, \quad u[\nu_{\text{theory}}(4^{\text{th}}-\text{order QED})] \approx 85 \text{ Hz}, \quad u[\nu_{\text{theory}}(\text{others})] \lesssim \mathcal{O}(\text{Hz}) \]

Experiment: [Liu et al., PRL 82, 711 (1999)]

Theory (summary): [CODATA, Rev. Mod. Phys. 88, 035009 (2016)]

Weak

\[\delta \nu_{\text{weak}} = -65 \text{ Hz, independent of } \sin^2(\theta_W) \text{ at LO} \]

[\text{Eides, PRA 53, 2953 (1996)}]

New experiments and calculations targeting \(\mathcal{O}(10) \text{ Hz} \) precision level
Enhanced Sensitivity to Highly-Singular Parity-Conserving Forces in Muonium

[Stadnik, *PRL* 120, 223202 (2018)]

Illustrative example – SM predicts “long range” neutrino-mediated forces

\begin{align*}
V_\nu(r) & \sim \frac{G_F^2}{r^5} + \text{spin-dependent terms}
\end{align*}

In 4-Fermi approximation:
Enhanced Sensitivity to Highly-Singular Parity-Conserving Forces in Muonium

[Stadnik, *PRL* 120, 223202 (2018)]

Illustrative example – SM predicts “long range” neutrino-mediated forces

\[
\delta \nu \sim \frac{a_B}{\lambda_Z} (G_F^2/a_B^5) \sim \text{Hz}
\]

No hadronic nucleus => lower cutoff length scale is \(\sim \lambda_Z\), instead of \(\sim R_{\text{nucl}}\)

In 4-Fermi approximation:

\[
V_\nu(r) \sim \frac{G_F^2}{r^5} + \text{spin-dependent terms}
\]

No centrifugal barrier!
Enhanced Sensitivity to Highly-Singular Parity-Conserving Forces in Muonium

Illustrative example – SM predicts “long range” neutrino-mediated forces

In 4-Fermi approximation:

\[V_\nu(r) \sim \frac{G_F^2}{r^5} + \text{spin-dependent terms} \]

\[\delta\nu \sim \left(\frac{a_B}{\lambda_Z}\right)^2 \left(\frac{G_F^2}{a_B^5}\right) \sim \text{Hz} \]

No centrifugal barrier!

No hadronic nucleus \(\Rightarrow \) lower cutoff length scale is \(\sim \lambda_Z \), instead of \(\sim R_{\text{nucl}} \)

\(\Rightarrow \) clean system
Enhanced Sensitivity to Highly-Singular Parity-Conserving Forces in Muonium

[Stadnik, *PRL* 120, 223202 (2018)]

Illustrative example – SM predicts “long range” neutrino-mediated forces

\[
\begin{align*}
\text{In 4-Fermi approximation:} \\
V_\nu(r) &\sim \frac{G_F^2}{r^5} + \text{spin-dependent terms} \\
\delta \nu_\nu &\sim \left(\frac{a_B}{\lambda_Z}\right)^2 \left(\frac{G_F^2}{a_B^5}\right) \sim \text{Hz}
\end{align*}
\]

No hadronic nucleus \(\Rightarrow\) lower cutoff length scale is \(\sim \lambda_Z\), instead of \(\sim R_{\text{nucl}}\)

\(\Rightarrow\) clean system

\[F_\nu \propto \left(\frac{R^3}{r^6}\right) \leq R^0 \Rightarrow \text{no penalty in small systems, cf. } F_{\text{grav}} \propto \left(\frac{R^3}{r^2}\right) \leq R^4\]
Illustrative example – SM predicts “long range” neutrino-mediated forces

\[V_{\nu}(r) \sim \frac{G_F^2}{r^5} + \text{spin-dependent terms} \]

\[\delta \nu \sim \left(\frac{a_B}{\lambda_Z} \right)^2 \left(\frac{G_F^2}{a_B^5} \right) \sim \text{Hz} \]

No centrifugal barrier!

No hadronic nucleus \(\Rightarrow \) lower cutoff length scale is \(\sim \lambda_Z \), instead of \(\sim R_{\text{nucl}} \)

\(\Rightarrow \) clean system

\[F_{\nu} \propto \frac{(R^3)^2}{r^6} \leq R^0 \Rightarrow \text{no penalty in small systems, cf.} \ F_{\text{grav}} \propto \frac{(R^3)^2}{r^2} \leq R^4 \]

\(\left(G_{\text{eff}}^2 \right)_{\text{muonium}} < 10^2 G_F^2 \) \hspace{1em} \text{cf.} \hspace{1em} \left(G_{\text{eff}}^2 \right)_{\text{macroscopic}} < 10^{20} G_F^2 \]
Outline

1. Electroweak Phenomena

2. Electric Dipole Moments

Motivation for EDM Experiments

- Observed predominance of matter over antimatter in Universe
Motivation for EDM Experiments

• Observed predominance of matter over antimatter in Universe

• In hot big bang model, require sources of CP violation to produce this asymmetry
Motivation for EDM Experiments

- Observed predominance of matter over antimatter in Universe
- In hot big bang model, require sources of CP violation to produce this asymmetry
- Known sources of CP violation in the standard model (δ_{CKM} and $\theta_{\text{QCD}} \approx 0$) insufficient
Motivation for EDM Experiments

• Observed predominance of matter over antimatter in Universe

• In hot big bang model, require sources of CP violation to produce this asymmetry

• Known sources of CP violation in the standard model (δ_{CKM} and $\theta_{\text{QCD}} \approx 0$) insufficient

• EDM experiments are high-precision low-energy probes of possible new sources of CP violation
Atomic Electric Dipole Moments
Atomic Electric Dipole Moments

\[\psi = \begin{array}{l}
\ \ \ \ + \\
+ \xi \\
\end{array} \begin{array}{l}
\ \ \ \ - \\
\ + \\
\end{array} \Rightarrow |\psi|^2 = \]
Atomic Electric Dipole Moments

\[h\nu_i = 2|\mu_i B \pm d_i E| \]

\[\psi = \left(\begin{array}{c} + \\ \xi \\ + \\ - \end{array} \right) \Rightarrow |\psi|^2 = \]
Atomic Electric Dipole Moments

\[h\nu_i = 2 \left| \mu_i B \pm d_i E \right| \]

Flip sign by reversing the P,T-odd invariant \(\mathbf{E} \cdot \mathbf{B} \)

\[\psi = \; \begin{array}{c} \text{+} \end{array} \; + \xi \begin{array}{c} \text{+} \end{array} \; = \Rightarrow \; |\psi|^2 = \; \begin{array}{c} \text{+} \end{array} \; \]
Hadronic CP Violation in Diamagnetic Atoms

Nucleon EDMs: [Crewther, Di Vecchia, Veneziano, Witten, *PLB* **88**, 123 (1979)]

Intranuclear forces: [Haxton, Henley, *PRL* **51**, 1937 (1983)],

Illustrative example: \[\mathcal{L}_{\theta_{\text{QCD}}} = \theta \frac{g^2}{32\pi^2} G\tilde{G} \]
Hadronic CP Violation in Diamagnetic Atoms

Nucleon EDMs: [Crewther, Di Vecchia, Veneziano, Witten, PLB 88, 123 (1979)]

Intranuclear forces: [Haxton, Henley, PRL 51, 1937 (1983)],
[O. Sushkov, Flambaum, Khriplovich, JETP 60, 873 (1984)]

Illustrative example: \[\mathcal{L}_{QCD} = \theta \frac{g^2}{32\pi^2} G \tilde{G} \]

Nucleon EDMs
Hadronic CP Violation in Diamagnetic Atoms

Nucleon EDMs: [Crewther, Di Vecchia, Veneziano, Witten, *PLB* 88, 123 (1979)]

Intranuclear forces: [Haxton, Henley, *PRL* 51, 1937 (1983)],
[O. Sushkov, Flambaum, Khriplovich, *JETP* 60, 873 (1984)]

Illustrative example:

\[\mathcal{L}_{QCD} = \theta \frac{g^2}{32\pi^2} G \tilde{G} \]

Nucleon EDMs

CP-violating intranuclear forces

In nuclei, *tree-level* CP-violating intranuclear forces dominate over *loop-induced* nucleon EDMs [loop factor = \(1/(8\pi^2)\)].
Schiff’s Theorem: “In a neutral atom made up of point-like non-relativistic charged particles (interacting only electrostatically), the constituent EDMs are screened from an external electric field.”
Screening of Hadronic CP Violation in Atoms

Schiff’s Theorem: “In a neutral atom made up of point-like non-relativistic charged particles (interacting only electrostatically), the constituent EDMs are *screened* from an external electric field.”

Classical explanation for nuclear EDM: A neutral atom does not accelerate in an external electric field!
Schiff’s Theorem: “In a neutral atom made up of point-like non-relativistic charged particles (interacting only electrostatically), the constituent EDMs are screened from an external electric field.”

Classical explanation for nuclear EDM: A neutral atom does not accelerate in an external electric field!
Screening of Hadronic CP Violation in Atoms

[Schiff, *Phys. Rev.* 132, 2194 (1963)]

Schiff’s Theorem: “In a neutral atom made up of point-like non-relativistic charged particles (interacting only electrostatically), the constituent EDMs are screened from an external electric field.”

Classical explanation for nuclear EDM: A neutral atom does not accelerate in an external electric field!
Lifting of Schiff’s Theorem

[Sandars, *PRL* 19, 1396 (1967)],
[O. Sushkov, Flambaum, Khriplovich, *JETP* 60, 873 (1984)]

In real (heavy) atoms: Incomplete screening of external electric field due to finite nuclear size, parametrised by *nuclear Schiff moment*.
Over the past decade, molecular experiments have improved sensitivity to electron EDM d_e by more than 100-fold:

ThO bound: $|d_e| < 10^{-29}$ e cm

Leptonic CP Violation in Paramagnetic Molecules

Over the past decade, molecular experiments have improved sensitivity to electron EDM d_e by more than 100-fold:

ThO bound: $|d_e| < 10^{-29} \text{ e cm}$

Sensitivity boost comes from large *effective* electric field seen by unpaired electrons: $E_{\text{eff}} \sim 10 - 100 \text{ GV/cm} \sim 10^5 E_{\text{lab, max}}$
Over the past decade, molecular experiments have improved sensitivity to electron EDM d_e by more than 100-fold:

ThO bound: $|d_e| < 10^{-29} \text{ e cm}$

Sensitivity boost comes from large *effective* electric field seen by unpaired electrons: $E_{\text{eff}} \sim 10^{-100} \text{ GV/cm} \sim 10^5 E_{\text{lab, max}}$

Small magnetic moment in $^3\Delta_1$ ThO state: $|\mu_{\text{ThO}}(^3\Delta_1)| \sim 10^{-2} \mu_B$

\Rightarrow Less sensitive to (stray) magnetic fields
Leptonic CP Violation in Paramagnetic Molecules

Over the past decade, molecular experiments have improved sensitivity to electron EDM d_e by more than 100-fold:

ThO bound: $|d_e| < 10^{-29}$ e cm

Sensitivity boost comes from large *effective* electric field seen by unpaired electrons: $E_{\text{eff}} \sim 10^{-100}$ GV/cm $\sim 10^5 E_{\text{lab, max}}$

Small magnetic moment in $^3\Delta_1$ ThO state: $|\mu_{\text{ThO}}(^3\Delta_1)| \sim 10^{-2} \mu_B$

$=>$ Less sensitive to (stray) magnetic fields

What about sensitivity to hadronic CP violation?
Hadronic CP Violation in Paramagnetic Molecules

[Flambaum, Pospelov, Ritz, Stadnik, arXiv:1912.13129]

Hadronic CP-violating effects arise at 2-loop level

LO: $\mathcal{O}(m_\pi^{-2})$

NLO: $\mathcal{O}(m_\pi^{-1})$

$\mu - d$: $\mathcal{O}[\ln (A)/p_F]$
Hadronic CP Violation in Paramagnetic Molecules

[Flambaum, Pospelov, Ritz, Stadnik, arXiv:1912.13129]

Hadronic CP-violating effects arise at 2-loop level, $\mathcal{O}(A)$ enhanced

LO: $\mathcal{O}(m_\pi^{-2})$

NLO: $\mathcal{O}(m_\pi^{-1})$

$\mu - d$: $\mathcal{O}[\ln (A)/p_F]$
Hadronic CP-violating effects arise at 2-loop level, $\mathcal{O}(A)$ enhanced

Interaction of one of photons with nucleus is \textit{magnetic} \Rightarrow no Schiff screening

\begin{align*}
\text{LO: } & \mathcal{O}(m_\pi^{-2}) \\
\text{NLO: } & \mathcal{O}(m_\pi^{-1}) \\
\mu - d: & \mathcal{O}[\ln (A)/p_F]
\end{align*}
Hadronic CP Violation in Paramagnetic Molecules

[Flambaum, Pospelov, Ritz, Stadnik, arXiv:1912.13129]

Hadronic CP-violating effects arise at 2-loop level, \(\mathcal{O}(A) \) enhanced

Interaction of one of photons with nucleus is magnetic => no Schiff screening

\[
\text{LO: } \mathcal{O}(m_\pi^{-2})
\]

\[
\text{NLO: } \mathcal{O}(m_\pi^{-1})
\]

\[
\mu - d: \mathcal{O}[\ln(A)/p_F]
\]

\(\pi^0, \eta \) contributions: \textit{opposite sign}

\(p, n \) contributions: \textit{same sign}

Example – \(\theta_{\text{QCD}} \) term:

For \(Z \sim 80, A \sim 200 \):
\[
C_{\text{SP}}(\theta) \approx [0.1_{\text{LO}} + 1.0_{\text{NLO}} + 1.7_{(\mu d)}] \times 10^{-2} \theta \approx 0.03 \theta
\]
Bounds on Hadronic CP Violation Parameters

ThO bounds: [Flambaum, Pospelov, Ritz, Stadnik, arXiv:1912.13129]

\[
|\theta|_{\text{ThO}} < 3 \times 10^{-8} \\
|\theta|_n < 2 \times 10^{-10} \\
|\theta|_{\text{Hg}} < 1.5 \times 10^{-10}
\]

\[
|d_p|_{\text{ThO}} < 2 \times 10^{-23} \text{ e cm} \\
|d_p|_{\text{Hg}} < 2 \times 10^{-25} \text{ e cm} \\
|d_p|_{\text{Xe}} < 3 \times 10^{-22} \text{ e cm}
\]

\[
|\tilde{g}_{\pi NN}^{(1)}|_{\text{ThO}} < 4 \times 10^{-10} \\
|\tilde{g}_{\pi NN}^{(1)}|_n < 1 \times 10^{-10} \\
|\tilde{g}_{\pi NN}^{(1)}|_{\text{Hg}} < 1 \times 10^{-12} \\
|\tilde{g}_{\pi NN}^{(1)}|_{\text{Xe}} < 7 \times 10^{-8}
\]
Bounds on Hadronic CP Violation Parameters

ThO bounds: [Flambaum, Pospelov, Ritz, Stadnik, arXiv:1912.13129]

\[
\begin{align*}
|\theta|_{\text{ThO}} &< 3 \times 10^{-8} \\
|\theta|_n &< 2 \times 10^{-10} \\
|\theta|_{\text{Hg}} &< 1.5 \times 10^{-10}
\end{align*}
\]

\[
\begin{align*}
|d_p|_{\text{ThO}} &< 2 \times 10^{-23} \text{ ecm} \\
|d_p|_{\text{Hg}} &< 2 \times 10^{-25} \text{ ecm} \\
|d_p|_{\text{Xe}} &< 3 \times 10^{-22} \text{ ecm}
\end{align*}
\]

\[
\begin{align*}
|\vec{g}^{(1)}_{\pi NN}|_{\text{ThO}} &< 4 \times 10^{-10} \\
|\vec{g}^{(1)}_{\pi NN}|_n &< 1 \times 10^{-10} \\
|\vec{g}^{(1)}_{\pi NN}|_{\text{Hg}} &< 1 \times 10^{-12} \\
|\vec{g}^{(1)}_{\pi NN}|_{\text{Xe}} &< 7 \times 10^{-8}
\end{align*}
\]

Current bounds from molecules are \(\sim10–100\) times weaker than from Hg & n, but are \(\sim10–100\) times stronger than bounds from Xe.
Bounds on Hadronic CP Violation Parameters

ThO bounds: [Flambaum, Pospelov, Ritz, Stadnik, arXiv:1912.13129]

\[
|\theta|_{\text{ThO}} < 3 \times 10^{-8} \\
|\theta|_n < 2 \times 10^{-10} \\
|\theta|_{\text{Hg}} < 1.5 \times 10^{-10}
\]

\[
|d_p|_{\text{ThO}} < 2 \times 10^{-23} \text{ e cm} \\
|d_p|_{\text{Hg}} < 2 \times 10^{-25} \text{ e cm} \\
|d_p|_{\text{Xe}} < 3 \times 10^{-22} \text{ e cm}
\]

\[
|g^{(1)}_{\pi NN}|_{\text{ThO}} < 4 \times 10^{-10} \\
|g^{(1)}_{\pi NN}|_n < 1 \times 10^{-10} \\
|g^{(1)}_{\pi NN}|_{\text{Hg}} < 1 \times 10^{-12} \\
|g^{(1)}_{\pi NN}|_{\text{Xe}} < 7 \times 10^{-8}
\]

Current bounds from molecules are \(\sim 10–100\) times weaker than from Hg & n, but are \(\sim 10–100\) times stronger than bounds from Xe.

Clean bound on \(g^{(1)}_{\pi NN}\), unlike from Hg Schiff moment (where *nuclear uncertainties can formally nullify sensitivity* to \(g^{(1)}_{\pi NN}\) and derived quantities, e.g. \(\tilde{d}_u - \tilde{d}_d\)).
Motivation

Strong astrophysical evidence for existence of dark matter (~5 times more dark matter than ordinary matter).

\[\rho_{DM} \approx 0.4 \text{ GeV/cm}^3 \]
\[\nu_{DM} \sim 300 \text{ km/s} \]
Motivation

$\rho_{DM} \approx 0.4 \text{ GeV/cm}^3$

$\nu_{DM} \sim 300 \text{ km/s}$
Motivation

Ultra-low-mass bosons

$\rho_{DM} \approx 0.4 \text{ GeV/cm}^3$

$\nu_{DM} \sim 300 \text{ km/s}$
Low-mass Spin-0 Dark Matter

- Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_\varphi c^2 t / \hbar)$, with energy density $\langle \rho_\varphi \rangle \approx m_\varphi^2 \varphi_0^2 / 2$ ($\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3$)

$$V(\varphi) = \frac{m_\varphi^2 \varphi^2}{2}$$

$$\ddot{\varphi} + m_\varphi^2 \varphi \approx 0$$
Low-mass Spin-0 Dark Matter

- Low-mass spin-0 particles form a coherently oscillating classical field \(\varphi(t) = \varphi_0 \cos(m_\varphi c^2 t/\hbar) \), with energy density \(<\rho_\varphi> \approx m_\varphi^2 \varphi_0^2/2 \) (\(\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3 \))
- *Coherently* oscillating field, since *cold* (\(E_\varphi \approx m_\varphi c^2 \))
Low-mass Spin-0 Dark Matter

- Low-mass spin-0 particles form a coherently oscillating classical field \(\varphi(t) = \varphi_0 \cos(m_\varphi c^2 t/\hbar) \), with energy density \(\langle \rho_\varphi \rangle \approx m_\varphi^2 \varphi_0^2/2 \) (\(\rho_{\text{DM,local}} \approx 0.4 \text{ GeV/cm}^3 \))

- *Coherently* oscillating field, since *cold* \((E_\varphi \approx m_\varphi c^2) \)

- \(\Delta E_\varphi / E_\varphi \sim \langle v_\varphi^2 \rangle / c^2 \sim 10^{-6} \Rightarrow \tau_{\text{coh}} \sim 2\pi/\Delta E_\varphi \sim 10^6 T_{\text{osc}} \)
Low-mass Spin-0 Dark Matter

• Low-mass spin-0 particles form a coherently oscillating classical field $\varphi(t) = \varphi_0 \cos(m_\varphi c^2 t/\hbar)$, with energy density $<\rho_{\varphi}> \approx m_\varphi^2 \varphi_0^2/2$ ($\rho_{DM,local} \approx 0.4$ GeV/cm3)

• *Coherently* oscillating field, since *cold* ($E_\varphi \approx m_\varphi c^2$)

• $\Delta E_\varphi/E_\varphi \sim <v_\varphi^2>/c^2 \sim 10^{-6} \Rightarrow \tau_{coh} \sim 2\pi/\Delta E_\varphi \sim 10^6 T_{osc}$

• *Classical* field for $m_\varphi \lesssim 1$ eV, since $n_\varphi(\lambda_{dB,\varphi}/2\pi)^3 \gg 1$
Low-mass Spin-0 Dark Matter

• Low-mass spin-0 particles form a coherently oscillating classical field $\phi(t) = \phi_0 \cos(m_\phi c^2 t/\hbar)$, with energy density $<\rho_\phi> \approx m_\phi^2 \phi_0^2/2$ ($\rho_{\text{DM,local}} \approx 0.4$ GeV/cm3)

• Coherently oscillating field, since cold ($E_\phi \approx m_\phi c^2$)

• $\Delta E_\phi / E_\phi \sim <v_\phi^2>/c^2 \sim 10^{-6}$ \Rightarrow $\tau_{\text{coh}} \sim 2\pi/\Delta E_\phi \sim 10^6 T_{\text{osc}}$

• Classical field for $m_\phi \leq 1$ eV, since $n_\phi(\lambda_{\text{dB,}\phi}/2\pi)^3 \gg 1$

• 10^{-21} eV $\leq m_\phi \leq 1$ eV \iff 10^{-7} Hz $\leq f \leq 10^{14}$ Hz

Lyman-α forest measurements [suppression of structures for $L \leq \mathcal{O}(\lambda_{\text{dB,}\phi})$]
Low-mass Spin-0 Dark Matter

• Low-mass spin-0 particles form a coherently oscillating classical field $\phi(t) = \phi_0 \cos(m_\phi c^2 t/\hbar)$, with energy density $\langle \rho_\phi \rangle \approx m_\phi^2 \phi_0^2/2$ ($\rho_{DM,\text{local}} \approx 0.4 \text{ GeV/cm}^3$)

• *Coherently* oscillating field, since *cold* ($E_\phi \approx m_\phi c^2$)

• $\Delta E_\phi / E_\phi \sim \langle v_\phi^2 \rangle / c^2 \sim 10^{-6} \Rightarrow \tau_{\text{coh}} \sim 2\pi/\Delta E_\phi \sim 10^6 T_{\text{osc}}$

• *Classical* field for $m_\phi \lesssim 1 \text{ eV}$, since $n_\phi(\lambda_{dB,\phi}/2\pi)^3 \gg 1$

• $10^{-21} \text{ eV} \lesssim m_\phi \lesssim 1 \text{ eV} \iff 10^{-7} \text{ Hz} \lesssim f \lesssim 10^{14} \text{ Hz}$

 ↑

 Lyman-α forest measurements [suppression of structures for $L \lesssim \mathcal{O}(\lambda_{dB,\phi})$]

• *Wave-like* signatures [cf. *particle-like* signatures of WIMP DM]
Low-mass Spin-0 Dark Matter

Dark Matter

Scalars (Dilatons):
\[\phi \xrightarrow{P} +\phi \]

Pseudoscalars (Axions):
\[\phi \xrightarrow{P} -\phi \]

→ Time-varying fundamental constants
- Atomic clocks
- Cavities and interferometers
- Fifth-force searches
- Astrophysics (e.g., BBN)

→ Time-varying spin-dependent effects
- Co-magnetometers
- Nuclear magnetic resonance
- Torsion pendula
Low-mass Spin-0 Dark Matter

Dark Matter

Scalars (Dilatons):
\[\phi \xrightarrow{P} +\phi \]

→ Time-varying fundamental constants
- Atomic clocks
- Cavities and interferometers
- Fifth-force searches
- Astrophysics (e.g., BBN)

Pseudoscalars (Axions):
\[\phi \xrightarrow{P} -\phi \]

→ Time-varying spin-dependent effects
- Co-magnetometers
- Nuclear magnetic resonance
- Torsion pendula
Dark Matter-Induced Cosmological Evolution of the Fundamental Constants

[Stadnik, Flambaum, *PRL* 114, 161301 (2015); *PRL* 115, 201301 (2015)],
[Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* 98, 064051 (2018)]
Dark Matter-Induced Cosmological Evolution of the Fundamental Constants

[Stadnik, Flambaum, *PRL* 114, 161301 (2015); *PRL* 115, 201301 (2015)],
[Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* 98, 064051 (2018)]

\[L_{\gamma} = \frac{\phi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \implies \frac{\delta \alpha}{\alpha} \approx \frac{\phi_0 \cos(\frac{m_{\phi} t}{\Lambda_{\gamma}})}{\Lambda_{\gamma}} \]
Dark Matter-Induced Cosmological Evolution of the Fundamental Constants

\[
\mathcal{L}_\gamma = \frac{\phi}{\Lambda_\gamma} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \implies \frac{\delta \alpha}{\alpha} \approx \frac{\phi_0 \cos(m_\phi t)}{\Lambda_\gamma}
\]

\[
\mathcal{L}_f = -\frac{\phi}{\Lambda_f} m_f \bar{f} f \implies \frac{\delta m_f}{m_f} \approx \frac{\phi_0 \cos(m_\phi t)}{\Lambda_f}
\]
Dark Matter-Induced Cosmological Evolution of the Fundamental Constants

\[
\mathcal{L}_\gamma = \frac{\phi}{\Lambda_\gamma} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \Rightarrow \frac{\delta \alpha}{\alpha} \approx \frac{\phi_0 \cos(m_\phi t)}{\Lambda_\gamma}
\]

\[
\mathcal{L}_f = -\frac{\phi}{\Lambda_f} m_f \bar{f} f \Rightarrow \frac{\delta m_f}{m_f} \approx \frac{\phi_0 \cos(m_\phi t)}{\Lambda_f}
\]

Solid material

\[
L \sim N a_B = N/(m_e \alpha)
\]
Dark Matter-Induced Cosmological Evolution of the Fundamental Constants

\[\mathcal{L}_\gamma = \frac{\phi}{\Lambda_\gamma} \frac{F_{\mu\nu}F^{\mu\nu}}{4} \implies \frac{\delta \alpha}{\alpha} \approx \frac{\phi_0 \cos(m_\phi t)}{\Lambda_\gamma} \]

\[\mathcal{L}_f = -\frac{\phi}{\Lambda_f} m_f \bar{f}f \implies \frac{\delta m_f}{m_f} \approx \frac{\phi_0 \cos(m_\phi t)}{\Lambda_f} \]

Solid material

\[\frac{\delta L(t)}{L} \approx -\frac{\delta \alpha(t)}{\alpha} - \frac{\delta m_e(t)}{m_e} \]

\[L \sim Na_B = N/(m_e \alpha) \]
Cavity-Based Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

[Stadnik, Flambaum, *PRL* 114, 161301 (2015); *PRA* 93, 063630 (2016)]

Solid material

\[L_{\text{free}} \sim N a_B = N/(m_e \alpha) \]
Cavity-Based Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

[Stadnik, Flambaum, *PRL* 114, 161301 (2015); *PRA* 93, 063630 (2016)]

Solid material

\[L_{\text{free}} \sim Na_B = N/(m_e \alpha) \]

Electronic transition

\[\Delta E = \hbar \omega_{\text{atom}} \]

\[\hbar \omega_{\text{atom}} \sim e^2/a_B \]

\[\Phi = \frac{\omega_{\text{atom}} L_{\text{free}}}{c} \propto \left(\frac{e^2}{a_B \hbar} \right) \left(\frac{Na_B}{c} \right) = N \alpha \]

\[\Rightarrow \frac{\delta \Phi}{\Phi} \approx \frac{\delta \alpha}{\alpha} \]
Cavity-Based Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

Solid material

Electronic transition

\[
\Delta E = \hbar \omega_{\text{atom}}
\]

\[
\hbar \omega_{\text{atom}} \sim e^2/a_B
\]

\[
L_{\text{free}} \sim N a_B = N/(m_e \alpha)
\]

- Sr/Si cavity (JILA): [Robinson, Ye et al., *Bulletin APS*, H06.00005 (2018)]
- Sr\(^+\)/ULE cavity (Weizmann): [Aharony et al., arXiv:1902.02788]
Constraints on Linear Interaction of Scalar Dark Matter with the Photon

Cavity-Based Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

[Stadnik, Flambaum, *PRL* 114, 161301 (2015); *PRA* 93, 063630 (2016)]

Solid material

\[L_{\text{free}} \sim N a_B = N / (m_e \alpha) \]

Freely-suspended mirrors

\[L_{\text{fixed}} \approx \text{const.} \]

\[\Phi \propto L_{\text{free}} \propto a_B \implies \frac{\delta \Phi}{\Phi} \approx -\frac{\delta \alpha}{\alpha} - \frac{\delta m_e}{m_e} \]
Cavity-Based Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

Solid material

Freely-suspended mirrors

\[L_{\text{free}} \sim Na_B = N/(m_e \alpha) \]

\[L_{\text{fixed}} \approx \text{const.} \]

\[\Phi \propto L_{\text{free}} \propto a_B \implies \frac{\delta \Phi}{\Phi} \approx -\frac{\delta \alpha}{\alpha} - \frac{\delta m_e}{m_e} \]

cf.

\[\frac{\delta \Phi}{\Phi} \approx \frac{\delta \alpha}{\alpha} \]
Laser Interferometry Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

Michelson interferometer (GEO 600)
Laser Interferometry Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

- Geometric asymmetry from beam-splitter: $\delta(L_x - L_y) \sim \delta(nl)$
Laser Interferometry Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

- Geometric asymmetry from beam-splitter: $\delta(L_x - L_y) \sim \delta(nl)$
Laser Interferometry Searches for Oscillating Variations in Fundamental Constants due to Dark Matter

[Grote, Stadnik, Phys. Rev. Research 1, 033187 (2019)]

- Geometric asymmetry from beam-splitter: $\delta(L_x - L_y) \sim \delta(nl)$
- Both broadband and resonant narrowband searches possible: $f_{DM} \approx f_{vibr,BS} \sim v_{\text{sound}}/l$, $Q \sim 10^6$ enhancement
Michelson vs Fabry-Perot-Michelson Interferometers

Michelson interferometer
(GEO 600, Fermilab holometer)

\[\delta(L_x - L_y)_{BS} \sim \delta(nl) \]

Fabry-Perot-Michelson interferometer
(LIGO, VIRGO, KAGRA)

\[\delta(L_x - L_y)_{BS} \sim \delta(nl)/N_{\text{eff}} \]

\[N_{\text{eff}} \sim \text{few} \times 10^2 \]
Michelson vs Fabry-Perot-Michelson Interferometers

Michelson interferometer
(GEO 600, Fermilab holometer)

\[
\delta(L_x - L_y)_{BS} \sim \delta(nl)
\]

Fabry-Perot-Michelson interferometer
(LIGO, VIRGO, KAGRA)

\[
\delta(L_x - L_y) \approx \delta(\Delta w)
\]

Change thickness of arm mirrors by amount \(\Delta w\)
Linear Interaction of Scalar Dark Matter with the Electron

\[\log_{10}\left(\frac{\text{GeV}}{\Lambda_e}\right) \]

Fifth-force searches (non-DM)

LIGO

Holometer

GEO 600
Linear Interaction of Scalar Dark Matter with the Electron

\[\text{log}_{10} \left(\frac{\text{GeV}}{\Lambda_e} \right) \]

\[\text{log}_{10} \left(\frac{m_\phi}{\text{eV}} \right) \]

- Fifth-force searches (non-DM)
- LIGO (modified)
- Holometer (narrowband)

GEO 600
Linear Interaction of Scalar Dark Matter with the Electron

\[
\log_{10}\left(\frac{\text{GeV}}{\Lambda_e}\right)
\]
\[
\log_{10}\left(\frac{m_\phi}{\text{eV}}\right)
\]

Fifth-force searches (non-DM)

LIGO (modified)

Holometer (narrowband)

Cross-correlation between pair of detectors

GEO 600
Summary

1. Electroweak Phenomena
 - *Cs PNC experiments*: electroweak theory (PNC effects), nuclear anapole moments, new Z-like bosons
 - *Muonium hyperfine ground-state spectroscopy*: electroweak theory (PC effects), highly-singular PC forces

2. Electric Dipole Moments
 - *EDM experiments in paramagnetic molecules*: sensitive probes of hadronic CP violation, in addition to leptonic CP violation

 - *Optical interferometers and cavities*: sensitive probes of apparent oscillations in α and m_e induced by oscillating scalar DM field
Back-Up Slides
Temporal Coherence

- **Low-mass spin-0 particles** form a **coherently oscillating classical field** \(\varphi(t) = \varphi_0 \cos(m_\varphi c^2 t/\hbar) \), with energy density
 \[<\rho_\varphi> \approx m_\varphi^2 \varphi_0^2/2 \ (\rho_{DM,\text{local}} \approx 0.4 \text{ GeV/cm}^3) \]

- \(\Delta E_\varphi / E_\varphi \sim <v_\varphi^2>/c^2 \sim 10^{-6} \Rightarrow \tau_{coh} \sim 2\pi/\Delta E_\varphi \sim 10^6 T_{osc} \)

![Evolution of \(\varphi_0 \) with time](image1)

![Probability distribution function of \(\varphi_0 \)](image2)
Dark Matter-Induced Cosmological Evolution of the Fundamental Constants

[Stadnik, Flambaum, *PRL* 114, 161301 (2015); *PRL* 115, 201301 (2015)],
[Hees, Minazzoli, Savalle, Stadnik, Wolf, *PRD* 98, 064051 (2018)]

\[\mathcal{L}_\gamma = \frac{\phi}{\Lambda_\gamma} F_{\mu\nu} F^{\mu\nu} \quad \Rightarrow \quad \frac{\delta \alpha}{\alpha} \approx \frac{\phi_0 \cos(m_\phi t)}{\Lambda_\gamma} \]

\[\mathcal{L}_f = -\frac{\phi}{\Lambda_f} m_f \bar{f} f \quad \Rightarrow \quad \frac{\delta m_f}{m_f} \approx \frac{\phi_0 \cos(m_\phi t)}{\Lambda_f} \]

\[\phi = \phi_0 \cos(m_\phi t - \mathbf{p}_\phi \cdot \mathbf{x}) \quad \Rightarrow \quad \mathbf{F} \propto \mathbf{p}_\phi \sin(m_\phi t) \]

\[\begin{aligned}
\mathcal{L}'_\gamma &= \frac{\phi^2}{(\Lambda'_\gamma)^2} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \\
\mathcal{L}'_f &= -\frac{\phi^2}{(\Lambda'_f)^2} m_f \bar{f} f
\end{aligned} \]

\[\Rightarrow \quad \frac{\delta \alpha}{\alpha} \propto \frac{\delta m_f}{m_f} \propto \delta \rho_\phi \]

\[\mathbf{F} \propto \nabla \rho_\phi \]
Consider \textit{quadratic couplings} of an oscillating classical scalar field, $\varphi(t) = \varphi_0 \cos(m\varphi t)$, with SM fields.

\[
\mathcal{L}_f = -\frac{\phi^2}{(\Lambda_f')^2} m_f \bar{f}f \quad \text{c.f.} \quad \mathcal{L}_{f}^{\text{SM}} = -m_f \bar{f}f \implies m_f \to m_f \left[1 + \frac{\phi^2}{(\Lambda'_f)^2} \right]
\]

\[
\implies \frac{\delta m_f}{m_f} = \frac{\phi_0^2}{(\Lambda'_f)^2} \cos^2(m\varphi t) = \frac{\phi_0^2}{2(\Lambda'_f)^2} + \frac{\phi_0^2}{2(\Lambda'_f)^2} \cos(2m\varphi t)
\]

\[
\rho_\varphi = \frac{m^2_\varphi \phi_0^2}{2} \implies \phi_0^2 \propto \rho_\varphi
\]
Dark Matter-Induced Cosmological Evolution of the Fundamental Constants

Consider \textit{quadratic couplings} of an oscillating classical scalar field, \(\phi(t) = \phi_0 \cos(m_\phi t) \), with SM fields.

\[
\mathcal{L}_f = -\frac{\phi^2}{(\Lambda'_f)^2} m_f \bar{f}f \quad \text{c.f.} \quad \mathcal{L}^{\text{SM}}_f = -m_f \bar{f}f \quad \Rightarrow \quad m_f \rightarrow m_f \left[1 + \frac{\phi^2}{(\Lambda'_f)^2} \right]
\]

\[
\Rightarrow \quad \frac{\delta m_f}{m_f} = \frac{\phi_0^2}{(\Lambda'_f)^2} \cos^2(m_\phi t) = \frac{\phi_0^2}{2(\Lambda'_f)^2} + \frac{\phi_0^2}{2(\Lambda'_f)^2} \cos(2m_\phi t)
\]

\textbf{‘Slow’ drifts} [Astrophysics (high \(\rho_{DM} \)): BBN, CMB]

\textbf{+ Gradients} [Fifth forces]

\textbf{Oscillating variations} [Laboratory (high precision)]
Fifth Forces: Linear vs Quadratic Couplings

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider the effect of a massive body (e.g., Earth) on the scalar DM field

Linear couplings \((\phi \bar{X} X)\)

\[
\phi = \phi_0 \cos(m_\phi t) - A \frac{e^{-m_\phi r}}{r}
\]

Quadratic couplings \((\phi^2 \bar{X} X)\)

\[
\phi = \phi_0 \cos(m_\phi t) \left(1 - \frac{B}{r}\right)
\]

Gradients + screening/amplification
Consider the effect of a massive body (e.g., Earth) on the scalar DM field

Linear couplings ($\phi \tilde{\chi} \chi$)

$$\phi = \phi_0 \cos(m_\phi t) - A \frac{e^{-m_\phi r}}{r}$$

Quadratic couplings ($\phi^2 \tilde{\chi} \chi$)

$$\phi = \phi_0 \cos(m_\phi t) \left(1 - \frac{B}{r}\right) - C \frac{e^{-2m_\phi r}}{r^3}$$

Gradients + screening/amplification

Fifth Forces: Linear vs Quadratic Couplings

[Hees, Minazzoli, Savalle, Stadnik, Wolf, PRD 98, 064051 (2018)]

Consider the effect of a massive body (e.g., Earth) on the scalar DM field

Linear couplings ($\phi \ddot{X}X$)

\[\phi = \phi_0 \cos(m_\phi t) - A \frac{e^{-m_\phi r}}{r} \]

Quadratic couplings ($\phi^2 \ddot{X}X$)

\[\phi = \phi_0 \cos(m_\phi t) \left(1 - \frac{B}{r}\right) - C \frac{e^{-2m_\phi r}}{r^3} \]

Motional gradients: $\phi_0 \cos(m_\phi t - p_\phi \cdot x)$

“Fifth-force” experiments: torsion pendula, atom interferometry

Gradients + screening/amplification
Constraints on Linear Interaction of Scalar Dark Matter with the Electron

![Graph showing constraints on scalar dark matter interactions with the electron. The graph plots \(\log_{10} \left(\frac{m_\phi}{eV} \right) \) against \(\log_{10} \left(\frac{\Lambda}{eV} \right) \). The graph includes regions for fifth-force searches (non-DM), LIGO (modified), Holometer (narrowband), and technical naturalness (\(\Lambda \sim 10 \text{ TeV} \)).]
Quartic Self-Interaction of Scalar

![Graph of Quartic Self-Interaction of Scalar]

- Structures (DM)
- Black Holes

Graph axes:
- $\log_{10} |\lambda_\phi|$
- $\log_{10}\left(\frac{m_\phi}{\text{eV}}\right)$
Constraints on Linear Interaction of Scalar Dark Matter with the Higgs Boson

Rb/Cs constraints:

[Stadnik, Flambaum, PRA 94, 022111 (2016)]

2 – 3 orders of magnitude improvement!
BBN Constraints on ‘Slow’ Drifts in Fundamental Constants due to Dark Matter

[Stadnik, Flambaum, *PRL* 115, 201301 (2015)]

- Largest effects of DM in early Universe (highest ρ_{DM})
- Big Bang nucleosynthesis ($t_{\text{weak}} \approx 1\text{s} - t_{\text{BBN}} \approx 3\text{ min}$)
- Primordial ^4He abundance sensitive to n/p ratio
 (almost all neutrons bound in ^4He after BBN)

\[
\frac{\Delta Y_p(^4\text{He})}{Y_p(^4\text{He})} \approx \frac{\Delta (n/p)_{\text{weak}}}{(n/p)_{\text{weak}}} - \Delta \left[\int_{t_{\text{weak}}}^{t_{\text{BBN}}} \Gamma_n(t) dt \right]
\]

\[
p + e^- \leftrightarrow n + \nu_e
\]

\[
n + e^+ \leftrightarrow p + \bar{\nu}_e
\]

\[
n \to p + e^- + \bar{\nu}_e
\]
Back-Reaction Effects in BBN

[Sörensen, Sibiryakov, Yu, PRELIMINARY – In preparation]
Constraints on Quadratic Interaction of Scalar Dark Matter with the Photon

15 orders of magnitude improvement!
Oscillating Electric Dipole Moments

Nucleons: [Graham, Rajendran, *PRD* 84, 055013 (2011)]
Atoms and molecules: [Stadnik, Flambaum, *PRD* 89, 043522 (2014)]

\[\mathcal{L}_g = \frac{C_G a_0 \cos(m_a t)}{f_a} \frac{g^2}{32\pi^2} G \tilde{G} \]

Nucleon EDMs

\[g_{\pi NN} = 13.5 \]

\[g_{\pi NN}^{(0)} \approx 0.016 \frac{C_G a_0 \cos(m_a t)}{f_a} \]

CP-violating intranuclear forces

In nuclei, *tree-level* CP-violating intranuclear forces dominate over *loop-induced* nucleon EDMs [loop factor = 1/(8\pi^2)].