

Recent developments

Antonin Portelli 3rd of February 2020 CERN

THE UNIVERSITY

of EDINBURGH

Picture: Berkley Lab 26/03/1959 - US National Archive

RBC/UKQCD Collaboration

BNL and BNL/RBRC: Yasumichi Aoki (KEK) Peter Boyle (UoE) Taku Izubuchi Yong-Chull Jang Chulwoo Jung Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni

<u>UC Boulder:</u> Oliver Witzel

<u>CERN:</u> Mattia Bruno <u>Columbia University:</u> Ryan Abbot **Norman Christ** Duo Guo Christopher Kelly Bob Mawhinney Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang Yidi Zhao Edinburgh University: Luigi Del Debbio Felix Erben Vera Gülpers Nelson Lachini Michael Marshall Fionn Ó hÓgáin Raoul Hodgson Antonin Portelli Andrew Yong Azusa Yamaguchi <u>Peking University:</u> **Xu Feng**

<u>University of Regensburg:</u> Christoph Lehner (BNL)

<u>University of Southampton:</u> Nils Asmussen Jonathan Flynn Ryan Hill **Andreas Jüttner James Richings Chris Sachrajda**

<u>Stony Brook University:</u> Jun-Sik Yoo Sergey Syritsyn (RBRC)

<u>University of Connecticut:</u> Tom Blum Dan Hoying (BNL) Luchang Jin (RBRC) Cheng Tu

<u>MIT:</u> David Murphy

Nicolas Garron

University of Liverpool:

<u>CP3:</u>

Toby Tsang

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreements No 757646 & 813942.

- Rare kaon decays at the physical point
- Isospin corrections to $K_{\ell 2}$ decays at the physical point

Rare kaon decays at the physical point

Rare kaon decays

Experimental measurement in progress at NA62 (CERN). Important results are expected in the next five years.

Improved theory predictions are needed.

Decay channels

• $K^0_{L/S} \to \pi^0 \bar{\nu} \nu$ Short-distance (top loop) dominated. KOTO experiment.

Long-distance amplitude

$$\begin{array}{|c|c|c|c|} \hline K^c \to \pi^c \gamma^* \end{array} & \text{EM current} \\ \mathscr{A}^c_\mu(q^2) = \int \mathrm{d}^4 x \ \langle \pi^c(\mathbf{p}) | \ \mathrm{T}[J_\mu(0)H_W(x)] \, | K^c(\mathbf{k}) \rangle \\ & \swarrow \\ \Delta S = 1 \ \mathrm{Effective \ weak \ Hamiltonian} \end{array}$$

$$\mathscr{A}^{c}_{\mu}(q^{2}) = -i\frac{G_{F}}{(4\pi)^{2}}[q^{2}(k+p)_{\mu} - (M_{K}^{2} - M_{\pi}^{2})q_{\mu}]V_{c}(z)$$

$$V_c(z) = a_c + b_c z + V_c^{\pi\pi}(z)$$
 $z = q^2/M_K^2$
SM prediction? [D'Ambrosio et al., JHEP08 (1998) 004]

Phenomenological relevance

- LFUV can be probed through the difference $a_{+}^{\mu\mu} a_{+}^{ee}$.
- Assuming MFV, related to B decays.

$$C_9^{B,\mu\mu} - C_9^{B,ee} = -\frac{a_+^{\mu\mu} - a_+^{ee}}{\sqrt{2\lambda_t}}$$

[Crivellin et al., PRD 93(7) 074038, 2016]

• SM value important for disambiguation, experiment only allow access to $|a_+ + b_+ z|^2$. (although combined e/μ analysis clearly favour - sign)

[D'Ambrosio et al., JHEP02 (2019) 49]

Minkowski spectral representation

$$\mathscr{A}_{\mu}^{c}(q^{2}) = i \int_{0}^{+\infty} \mathrm{d}E \, \frac{\rho(E)}{2E} \frac{\langle \pi^{c}(\mathbf{p}) | J_{\mu} | E, \mathbf{k} \rangle \langle E, \mathbf{k} | H_{W} | K^{c}(\mathbf{k}) \rangle}{E_{K}(\mathbf{k}) - E + i\varepsilon} - i \int_{0}^{+\infty} \mathrm{d}E \, \frac{\rho_{S}(E)}{2E} \frac{\langle \pi^{c}(\mathbf{p}) | H_{W} | E, \mathbf{p} \rangle \langle E, \mathbf{p} | J_{\mu} | K^{c}(\mathbf{k}) \rangle}{E - E_{\pi}(\mathbf{p}) + i\varepsilon}$$

[RBC-UKQCD, PRD 92(9), 094512, 2015]

Euclidean spectral representation

$$\begin{aligned} \mathscr{A}_{\mu}^{c}(q^{2},T_{a},T_{b}) &= -\int_{0}^{+\infty} \mathrm{d}E \, \frac{\rho(E)}{2E} \frac{\langle \pi^{c}(\mathbf{p}) | J_{\mu} | E, \mathbf{k} \rangle \langle E, \mathbf{k} | H_{W} | K^{c}(\mathbf{k}) \rangle}{E_{K}(\mathbf{k}) - E} \\ &\times (1 - \left| e^{[E_{K}(\mathbf{k}) - E]T_{a}} \right|) \\ &+ \int_{0}^{+\infty} \mathrm{d}E \, \frac{\rho_{S}(E)}{2E} \frac{\langle \pi^{c}(\mathbf{p}) | H_{W} | E, \mathbf{p} \rangle \langle E, \mathbf{p} | J_{\mu} | K^{c}(\mathbf{k}) \rangle}{E - E_{\pi}(\mathbf{p})} \\ &\times (1 - e^{-[E - E_{\pi}(\mathbf{p})]T_{b}}) \end{aligned}$$
Time integration range: $[-T_{a}, T_{b}]$.
Diverges at infinite time for $E < E_{K}(\mathbf{k})$
"Simple" here (only π , $\pi\pi\pi$).
Try to think about rare B decays!
[RBC-UKQCD, PRD 92(9), 094512, 2015]
\end{aligned}

Lattice correlators

[RBC-UKQCD, PRD 92(9), 094512, 2015]

Lattice correlators

[RBC-UKQCD, PRD 92(9), 094512, 2015]

- DWF action, $24^3 \times 64$ lattice with spacing ~0.12 fm.
- $N_f = 2 + 1$, $M_\pi \simeq 420 \text{ MeV}$ and $M_K \simeq 600 \text{ MeV}$.

• For this kinematics only single π state is problematic.

Results: correlators

Results: correlators

Results: exponential subtraction

Results: form factor

Physical lattice setup

- DWF action, $48^3 \times 96$ lattice with spacing ~0.12 fm.
- $N_f = 2 + 1$, $M_\pi \simeq 140 \text{ MeV}$ and $M_K \simeq 495 \text{ MeV}$.

- Kaon at rest, pion momentum $|p_{\pi}| = \frac{2\pi}{L} \simeq 226$ MeV.
- $z \simeq 0.01$, excellent to determine a_+ directly.

Conclusion

- Lattice framework for rare K decays achieved.
- Proof-of-concept calculations successful.
- Results comparison with phenomenology/experiment difficult because of unphysical parameters.

Perspectives

- Physical quark calculation: now! Direct determination of a_+ first, b_+ later.
- $\pi\pi \& \pi\pi\pi$ contamination problematic?
- We are excited with the NA62 $K^+ \to \pi^+ \bar{\nu} \nu$ and $K^+ \to \pi^+ \mu^+ \mu^-$ results.
- $K^+ \to \pi^+ e^+ e^-$ in future runs?

Rare hyperon decays

- Observed at HyperCP in 2005 and LHCb in 2018.
- SM value poorly known.
- Lattice project in progress, very much the beginning!

Current status

LHCb 2018 measurement

$$\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = (2.2^{+1.8}_{-1.3}) \cdot 10^{-8}$$
[LHCb, PRL 120(2), 2018]

Theory state-of the art

 $1.6 \cdot 10^{-8} < \mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) < 9.0 \cdot 10^{-8}$

[He, Tandean and Valencia, PRD 72(7), 2005]

Mix of baryon ChiPT, dispersive analysis, VMD, ... Essentially 100% long-distance. Most poorly described part: real part.

On the menu...

• 4 form factors to determine

- Painful contractions.
- N and $N\pi$ intermediate state growing exponentials.
- Possibly a big signal-to-noise ratio problem.
- Now working on a $M_{\pi} \sim 350~{\rm MeV}$ test run (no $N\pi$ contaminant here)

Isospin corrections to $K_{\ell 2}$ decays at the physical point

Motivations

Search new physics through the SM flavour structure

Motivations

- Light CKM coefficients: percent level reached.
- Inclusion of isospin breaking effects required to progress.

Current lattice status

Nice theory & lattice work by RM123

[RM123, PRD 100(3), 034514, 2019] [RM123, PRL 120(7), 072001, 2018] [RM123, PRD 95(3), 034504, 2017] [RM123, PRD 91(7), 074506, 2015]

• New challenge here: **physical point calculation**.

Full width IB corrections

Full width (rest frame)

$$\Gamma(P^+ \to \ell^+ \nu_\ell) = \Gamma = K \sum_{r,s} |\mathcal{M}^{rs}|^2$$
$$\mathcal{M}^{rs} = \langle \ell^+, r; \nu_\ell, s | H_W | P^+ \rangle = \overline{u}_\nu^s \, \widetilde{\mathcal{M}} \, v_\ell^r$$

- Tree-level matrix element (factorisable final state) $\mathcal{M}_0^{rs} = f_P M_P(\overline{u}_{\nu}^s \gamma_0^L v_{\ell}^r)$
- Width first-order isospin breaking (IB) corrections

$$\delta\Gamma = \delta K \sum_{r,s} |\mathcal{M}_0^{rs}|^2 + 2K_0 \underbrace{\sum_{r,s} \Re(\mathcal{M}_0^{rs} \delta \mathcal{M}^{rs*})}_{f_P M_P \operatorname{tr}[p_{\nu} \delta \widetilde{\mathcal{M}}(-p_{\ell} + im_{\ell})\gamma_0^L]}$$

IB corrections classification

• $\mathcal{O}(m_u - m_d)$: strong IB corrections v

• $\mathcal{O}(e_q^2)$: quark QED corrections

Factorisable

- $\mathcal{O}(e_{\ell}^2)$: lepton QED corrections Absorbed in renormalisation
- $\mathcal{O}(e_{\ell}e_q)$: quark-lepton QED corrections Non-factorisable

Factorisable corrections

$$\delta_{\text{fact.}} \mathcal{M}^{rs} = (\overline{u}_{\nu}^{s} \gamma_{0}^{L} v_{\ell}^{r}) \delta \mathcal{M}_{A}$$
$$\delta \mathcal{M}_{A} = \delta(\langle 0 | A_{0} | P^{+} \rangle)$$

"Standard" axial-pseudoscalar 2-point analysis

$$\delta C_{AP}(t) = C_{AP,0}(t) \left[\frac{\delta \mathcal{M}_P}{\mathcal{M}_{P,0}} + \frac{\delta \mathcal{M}_A}{\mathcal{M}_{A,0}} - \frac{\delta M_{P^+}}{M_P} - t\delta M_{P^+} \right]$$
$$\delta C_{PP}(t) = C_{PP,0}(t) \left[2 \frac{\delta \mathcal{M}_P}{\mathcal{M}_{P,0}} - \frac{\delta M_{P^+}}{M_P} - t\delta M_{P^+} \right]$$
$$(t \gg 0)$$

Non-factorisable correction

Amputated operator and matrix element

$$\overline{H}_{W}^{\alpha} = (\gamma_{\mu}^{L} \ell)^{\alpha} (\overline{q}_{1} \gamma_{\mu}^{L} q_{2})$$
$$\overline{\mathcal{M}}^{r\alpha} = \langle \ell^{+}, r | \overline{H}_{W}^{\alpha} | P^{+} \rangle = (\widetilde{\mathcal{M}} v_{\ell}^{r})^{\alpha}$$

Euclidean 3-point function

$$C_3^{\alpha\beta}(t_\ell, t_H, t_P) = \langle \overline{\ell}^{\alpha} \overline{H}_W^{\beta} \phi_P^{\dagger} \rangle$$

• Asymptotic behaviour ($t_P \ll t_H$ and $t_\ell \gg t_H$)

$$\delta_{\ell q} C_3^{\alpha \beta} = \frac{\mathcal{M}_{P,0} [\delta_{\ell q} \widetilde{\mathcal{M}}(-p_{\ell} + im_{\ell})]^{\alpha \beta}}{4\omega_{\ell} M_{P}} e^{-(t_H - t_P)M_{P}} e^{-(t_\ell - t_H)\omega_{\ell}}$$

bit of the width correction

Infrared divergences

[RM123, PRD 95(3), 034504, 2017]

- Finite-volume (FV): IR regulator.
- FV effects $\sim \log(\Lambda_{\rm IR}L)$, infinite-volume regulator $\Lambda_{\rm IR}$.
- FV subtraction: swap L and M_P .
- Add $\Gamma(P^+ \to \ell^+ \nu_\ell \gamma)$: swap $\Lambda_{\rm IR}$ and experimental cut.
- Performed in the point-like approximation.
 (we are working on the structure-dependent part)

Gauge ensemble

[RBC-UKQCD, PRD 93(7), 074505, 2016]

- Physical point Möbius domain-wall fermions.
- $a \simeq 0.12 \text{ fm}$, $N_f = 2 + 1$, 96×48^3 , $L_s = 24$.
- Valence light: physical mass z-Möbius $L_s = 10$.
- 98 configurations (20 trajectories spacing).
- 2000 eigenvectors/conf for the light red-black preconditioned matrix.

QED implementation

- ► QED_L theory.
- Interaction vertices A inserted on quark propagators using sequential solves.
- EM field Gaussian distributed from QED_L action.
- Local current vs. conserved: no new divergences for this process.

Correlation functions

2-point function: all-to-all with LMA.

- t_P , $t_\ell t_H$ fixed, 96 translations. A integrated.
- DWF lepton with twisted BC for energy conservation.

Non-factorisable corrections

22 configurations, 96 translations/conf.24 consecutive translations binned

Non-factorisable corrections

$$R_3(t_H) = \frac{\operatorname{tr}[p_{\nu} \circ \ell q \circ 3(\circ H) \gamma_0]}{\operatorname{tr}[p_{\nu} C_{3,0}(t_H) \gamma_0^L]} \simeq \frac{\delta_{\ell q} |\mathcal{I}|}{|\mathcal{M}_0|^2}$$

Outlook

- Isospin breaking corrections to weak decays are necessary for sub-percent CKM coefficients.
- Working setup for pion and kaon leptonic decays directly at physical quark masses.
- Low-statistics results encouraging.

- Soon: higher statistics and full analysis.
- **Renormalisation** of the weak Hamiltonian.
- Semi-leptonic decays.

Thank you!