$K \to \pi \pi$ decays from lattice QCD

Chris Sachrajda

(RBC-UKQCD Collaborations)

Department of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK

New Physics on the Low-Energy Precision Frontier CERN, Geneva, Switzerland January 20th - February 7th 2020

LEVERHULME $TRUST$ **Southampton**

Chris Sachrajda Low-Energy Precision Frontier, February 3rd 2020 1

The RBC & UKQCD collaborations

BNL and BNL/RBRC Yasumichi Aoki (KEK) Taku Izubuchi Yong-Chull Jang Chulwoo Jung Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohta (KEK) Amariit Soni

UC Boulder Oliver Witzel

CERN Mattia Bruno

Columbia University

Ryan Abbot Norman Christ Duo Guo **Christopher Kelly** Bob Mawhinney Masaaki Tomii Jiqun Tu

Bigeng Wang **Tianle Wang** Yidi Zhao

University of Connecticut Tom Blum Dan Hoving (BNL) Luchang Jin (RBRC) Cheng Tu

Edinburgh University

Peter Boyle Luigi Del Debbio Felix Erben Vera Gülpers Tadeusz Janowski Julia Kettle Michael Marshall Fionn Ó hÓgáin Antonin Portelli Tobias Tsang Andrew Yong Azusa Yamaguchi

KEK Julien Frison

University of Liverpool Nicolas Garron

MIT David Murphy

Peking University

Xu Feng

University of Regensburg Christoph Lehner (BNL)

University of Southampton

Nils Asmussen Jonathan Flynn Ryan Hill Andreas Jüttner James Richings Chris Sachrajda

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

1 Directly computing $K \to \pi\pi$ decay amplitudes

- **2** Evaluation of A_2
- **3** Evaluation of *A*⁰
- **4** Conclusions
- $K \to \pi\pi$ decays are a very important class of processes for standard model phenomenology with a long and noble history.
	- It is in these decays that both indirect and direct CP-violation was m. discovered.
- \bullet Bose Symmetry \Rightarrow the two-pion state has isospin 0 or 2.

 $I_{I=2}\langle \pi\pi|H_W|K^0\rangle = A_2\,e^{i\delta_2}\,, \qquad I_{I=0}\langle \pi\pi|H_W|K^0\rangle = A_0\,e^{i\delta_0}\,.$

Among the very interesting issues are the origin of the ∆*I* = 1/2 rule \bullet (Re A_0 /Re $A_2 \simeq 22.5$) and an understanding of the experimental value of ε'/ε , the parameter which was the first experimental evidence of direct CP-violation.

CP-violating experimental amplitudes: \bullet

$$
\eta_{+-} = \frac{\langle \pi^+ \pi^- | H_W | K_L \rangle}{\langle \pi^+ \pi^- | H_W | K_S \rangle} = \epsilon + \epsilon'
$$

$$
\eta_{00} = \frac{\langle \pi^0 \pi^0 | H_W | K_L \rangle}{\langle \pi^0 \pi^0 | H_W | K_S \rangle} = \epsilon - 2\epsilon'
$$

$$
\text{Re}\left(\frac{\epsilon'}{\epsilon}\right) = \frac{1}{6} \left(1 - \frac{|\eta_{00}|^2}{|\eta_{+-}|^2}\right)
$$

Theoretically (without isospin breaking corrections),

$$
\epsilon' = \frac{i\omega e^{i(\delta_2 - \delta_0)}}{\sqrt{2}} \left(\frac{\text{Im} A_2}{\text{Re} A_2} - \frac{\text{Im} A_0}{\text{Re} A_0} \right)
$$

where $\omega = \text{Re} A_2 / \text{Re} A_0 \simeq 1/22$.

- Indirect CP-violation: $|\epsilon| = (2.228 \pm 0.011) \times 10^{-3}$ \bullet
- Direct CP-violation: Re (ϵ'/ϵ) = (16.6 ± 2.3) × 10⁻⁴ \bullet

Southampton

The effective ∆*S* = 1 Hamiltonian can be written in the standard form:

$$
H_W = \frac{G_F}{\sqrt{2}} V_{us}^* V_{ud} \sum_{i=1}^{10} \left\{ z_i(\mu) + \tau y_i(\mu) \right\} Q_i(\mu),
$$

where

- *G^F* and *Vij* are the Fermi Constant and CKM matrix elements respectively;
- \bullet τ is the ratio of CKM matrix elements

$$
\tau = -\frac{V_{ts}^* V_{td}}{V_{us}^* V_{ud}} \simeq (1.543 + 0.635i) \times 10^{-3};
$$

(to be refined)

 $Q_i(\mu)$ are four-quark operators defined at the renormalisation scale μ with Wilson Coefficients $z_i(\mu)$ and $y_i(\mu)$.

$$
H_W = \frac{G_F}{\sqrt{2}} V_{us}^* V_{ud} \sum_{i=1}^{10} \left\{ z_i(\mu) + \tau y_i(\mu) \right\} Q_i(\mu)
$$

- Role of lattice computations is to evaluate the hadronic matrix elements $\langle \pi \pi | O_i(\mu) | K \rangle$.
- We can evaluate these matrix elements entirely non-perturbatively, but only in renormalisation schemes which can be defined beyond perturbation theory e.g. RI-(S)MoM.

$$
p_1^2 = p_2^2 = (p_1 - p_2)^2 = \mu^2.
$$

- Renormalisation condition chosen such that a suitable trace of this vertex $=$ tree-level value.
- This does not include schemes based on dimensional regularisation, such as MS.
- Since the Wilson coefficients were calculated using the $\overline{\text{MS}}$ scheme, there is necessarily an additional perturbative matching calculation from e.g. $RI-(S)M o M \rightarrow \overline{MS}$.
- The uncertainties on the Wilson coefficients and also on the SM parameters are significant in the determination of ϵ'/ϵ .

1 *A*⁰ and *A*² amplitudes with unphysical quark masses and with the pions at rest. "*K* to $\pi\pi$ decay amplitudes from lattice QCD," T.Blum, P.A.Boyle, N.H.Christ, N.Garron, E.Goode, T.Izubuchi, C.Lehner, Q.Liu, R.D. Mawhinney, C.T.S, A.Soni, C.Sturm, H.Yin and R. Zhou, Phys. Rev. D **84** (2011) 114503 [arXiv:1106.2714 [hep-lat]].

"Kaon to two pions decay from lattice QCD, $\Delta I = 1/2$ rule and CP violation" Q.Liu, Ph.D. thesis, Columbia University (2010)

2 *A*² at physical kinematics and a single coarse lattice spacing. "The $K \to (\pi \pi)_{I=2}$ Decay Amplitude from Lattice QCD," T.Blum, P.A.Boyle, N.H.Christ, N.Garron, E.Goode, T.Izubuchi, C.Jung, C.Kelly, C.Lehner, M.Lightman, Q.Liu, A.T.Lytle, R.D.Mawhinney, C.T.S., A.Soni, and C.Sturm

Phys. Rev. Lett. **108** (2012) 141601 [arXiv:1111.1699 [hep-lat]],

"Lattice determination of the $K \to (\pi \pi)_{I=2}$ Decay Amplitude A_2 "

Phys. Rev. D **86** (2012) 074513 [arXiv:1206.5142 [hep-lat]]

"Emerging understanding of the $\Delta I = 1/2$ Rule from Lattice QCD,"

P.A. Boyle, N.H. Christ, N. Garron, E.J. Goode, T. Janowski, C. Lehner, Q. Liu, A.T. Lytle, C.T. Sachrajda, A. Soni, and D.Zhang, Phys. Rev. Lett. **110** (2013) 15, 152001 [arXiv:1212.1474 [hep-lat]].

Southampton

3 *A*² at physical kinematics on two finer lattices ⇒ continuum limit taken. " $K \to \pi \pi \Delta I = 3/2$ decay amplitude in the continuum limit," T.Blum, P.A.Boyle, N.H.Christ, J.Frison, N.Garron, T.Janowski, C.Jung, C.Kelly, C.Lehner, A.Lytle, R.D.Mawhinney, C.T.S., A.Soni, H.Yin, and D.Zhang

Phys. Rev. D **91** (2015) 7, 074502 [arXiv:1502.00263 [hep-lat]].

4 *A*⁰ at physical kinematics and a single coarse lattice spacing. "Standard-model prediction for direct CP violation in $K \to \pi\pi$ decay," Z.Bai, T.Blum, P.A.Boyle, N.H.Christ, J.Frison, N.Garron, T.Izubuchi, C.Jung, C.Kelly, C.Lehner, R.D.Mawhinney, C.T.S, A. Soni, and D. Zhang,

Phys. Rev. Lett. **115** (2015) 21, 212001 [arXiv:1505.07863 [hep-lat]].

See also: "Calculation of ϵ' C.Kelly et al. PoS FPCP2016 (2017) 017

5 "An Improved standard model calculation of direct CP-violation on the lattice," RBC-UKQCD Collaborations, arXiv:20??.?????

 $K \to \pi\pi$ correlation function is dominated by the lightest state, i.e. the state with two-pions at rest (or the vacuum for $I = 0$). Maiani and Testa, PL B245 (1990) 585

$$
C(t_{\pi}) = A + B_1 e^{-2m_{\pi}t_{\pi}} + B_2 e^{-2E_{\pi}t_{\pi}} + \cdots
$$

Solution 1: Study an excited state. Lellouch and Lüscher, hep-lat/0003023 m. Solution 2: Introduce suitable boundary conditions such that the $\pi\pi$ ground × state is $|\pi(\vec{q})\pi(-\vec{q})\rangle$. RBC-UKQCD, C.h.Kim hep-lat/0311003 N.Christ, C.Kelly, D.Zhang, arXiv:1908.08640

For *B*-decays, with so many intermediate states below threshold, this is the main obstacle to producing reliable calculations.

Chris Sachrajda Low-Energy Precision Frontier, February 3rd 2020 4 \exists ▶ (\exists ▶ \exists \exists 10

Imagine now that we chosen the boundary conditions so that the ground state is \circ $|\pi(\vec{q})\pi(-\vec{q})\rangle.$

- In a finite volume each component of \vec{q} is quantised, with allowed values separated by 2π/*L*.
- Thus in order to obtain the physical value of $|\vec{q}|$ the volume must be chosen m. appropriately.
- Moreover, the $J = 0$, $I = 0$ and $I = 2$ channels are attractive and repulsive $\mathcal{L}^{\mathcal{L}}$ respectively and so the two cases must be studied on lattices of different volumes.

2. Evaluation of A_2

 \bullet For A_2 , there is no vacuum subtraction and we can use the Wigner-Eckart theorem to write

$$
\underbrace{\langle (\pi\pi)_{I_3=1}^{I=2} \mid}_{\sqrt{2}} Q^{\Delta I=3/2}_{\Delta I_3=1/2,i} \mid K^+\rangle = \frac{3}{2} \underbrace{\langle (\pi\pi)_{I_3=2}^{I=2} \mid Q^{\Delta I=3/2}_{\Delta I_3=3/2,i} \mid K^+\rangle}_{\langle \pi^+\pi^+\rangle},
$$

and impose anti-periodic conditions on the d-quark in one or more directions.

If we impose the anti-periodic boundary conditions in all 3 directions then the ground state is

$$
\left|\pi\left(\frac{\pi}{L},\frac{\pi}{L},\frac{\pi}{L}\right)\,\pi\left(\frac{-\pi}{L},\frac{-\pi}{L},\frac{-\pi}{L}\right)\right\rangle.
$$

- With an appropriate choice of *L* and the number of directions, we can arrange that $E_{\pi\pi} = m_K$.
- Isospin breaking by the boundary conditions is harmless here. \bullet

CTS & G.Villadoro, hep-lat/0411033

These are obtained using the Poisson summation formula:

$$
\frac{1}{L}\sum_{n=-\infty}^{\infty}f(p_n^2)=\int_{-\infty}^{\infty}\frac{dp}{2\pi}f(p^2)+\sum_{n\neq 0}\int_{-\infty}^{\infty}\frac{dp}{2\pi}f(p^2)e^{inpL},
$$

- For single-hadron states the finite-volume corrections decrease exponentially with the volume $\propto e^{-m_{\pi}L}$. For multi-hadron states, the finite-volume corrections generally fall as powers of the volume.
- For two-hadron states, there is a huge literature following the seminal work by Lüscher and the effects are generally understood.
	- **T** The spectrum of two-pion states in a finite volume is given by the scattering phase-shifts. M. Luscher, Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B354 (1991) 531.
	- **The** $K \to \pi\pi$ **amplitudes are obtained from finite-volume matrix elements by** the Lellouch-Lüscher factor which contains the derivative of the phase-shift. L.Lellouch & M.Lüscher, hep-lat/0003023; C.J.D.Lin, G.Martinelli, CTS & M.Testa,

hep-lat/0104006; C.h.Kim, CTS & S.R.Sharpe, hep-lat/0507006 · · ·

More recently we have also determined the finite-volume corrections for

 $\Delta m_K = m_{K_I} - m_{K_S}$. . N.H.Christ, X.Feng, G.Martinelli & CTS, arXiv:1504.01170

For three-hadron states, there has been a major pioneering effort by Hansen and Sharpe leading to much theoretical clarification.

see e.g. M.Hansen & S.Sharpe, arXiv:1901.00483

Southampton

RBC-UKQCD, T.Blum et al., arXiv:1502:00263

- *Wilson Coefficients* and *NPR(perturbative*) errors are not from our lattice \bullet calculation.
- Step-scaling can be used to increase the scale at which the matching is \bullet performed.

- The amplitude A_2 is considerably simpler to evaluate that A_0 . \bullet
- Our first results for *A*² at physical kinematics were obtained at a single, rather \bullet coarse, value of the lattice spacing ($a \approx 0.14$ fm). Estimated discretization errors at 15%. arXiv:1111.1699, arXiv:1206.5142
- \bullet Our latest results were obtained on two new ensembles, $48³$ with $a \simeq 0.11$ fm and 64^3 with $a \simeq 0.084$ fm so that we can make a continuum extrapolation:

Re(*A*2) = 1.50(4)stat(14)syst × 10[−]⁸ GeV. Im(*A*2) = −6.99(20)stat(84)syst × 10[−]¹³ GeV . arXiv:1502.00263

- The experimentally measured value is $Re(A_2) = 1.479(4) \times 10^{-8}$ GeV. \circ
- Although the precision can still be significantly improved (partly by perturbative \bullet calculations), the calculation of A_2 at physical kinematics can now be considered as standard.
- We are not currently working towards improving this result.

Southamp

RBC-UKQCD Collaboration, arXiv:1212.1474

 \bullet Re A_2 is dominated by a simple operator:

$$
O^{3/2}_{(27,1)} = (\bar{s}^i d^i)_L \left\{ (\bar{u}^j u^j)_L - (\bar{d}^j d^j)_L \right\} + (\bar{s}^i u^i)_L (\bar{u}^j d^j)_L
$$

and two diagrams:

- \circ Re *A*₂ is proportional to $C_1 + C_2$.
- The contribution to Re A_0 from O_2 is proportional to $2C_1 C_2$ and that from O_1 is \bullet proportional to $C_1 - 2C_2$ with the same overall sign.
- Colour counting might suggest that $C_2 \simeq \frac{1}{3}C_1$. \bullet
- \bullet We find instead that $C_2 \approx -C_1$ so that A_2 is significantly suppressed!
- The strong suppression of Re A_2 is a major factor in the $\Delta I = 1/2$ rule.

Evidence for the Suppression of Re A_2

Physical Kinematics

 \bullet Notation $(i) \equiv C_i$, $i = 1, 2$.

In 2015 RBC-UKQCD published our first result for ϵ'/ϵ computed at physical quark masses and kinematics, albeit still with large relative errors:

Z.Bai et al. (RBC-UKQCD), arXiv:1505.07863

$$
\left.\frac{\epsilon'}{\epsilon}\right|_{\text{RBC-UKQCD}} = (1.38 \pm 5.15 \pm 4.59) \times 10^{-4}
$$

to be compared with

$$
\left. \frac{\epsilon'}{\epsilon} \right|_{\text{Exp}} = (16.6 \pm 2.3) \times 10^{-4}.
$$

Is this 2.1 σ deviation real? \Rightarrow must reduce the uncertainties.

- The matrix elements themselves are calculated with a smaller relative error. m.
- \bullet This is by far the most complicated project that I have ever been involved with.
- Puzzle: For the $I = 0$ s-wave $\pi\pi$ phase shift we obtained $\delta_0 = (23.8 \pm 4.9 \pm 2.2)^\circ$, to be compared with the dispersive results of 34◦ . G.Colangelo et al.

- \bullet 32³ \times 64 ensemble (Möbius DWF and Iwasaki + DSDR gauge action)
- $a^{-1} = 1.3784(68)$ GeV, $L = 4.53$ fm.
- G-parity boundary conditions in 3-directions
- 216 configurations \bullet
- Almost physical kinematics: \bullet

 $m_{\pi} = 143.1(2.0)$ MeV $m_K = 490.6(2.2)$ MeV *E*_{ππ} = 498(11) MeV

- \bullet Increase the statistics: 216 \rightarrow 1438 configurations.
	- Reduce the statistical error;
	- Improved statistics allows for an in-depth study of the systematics. m.
- **•** Use an expanded set of operators to create the $\pi\pi$ state.
- Improve the non-perturbative renormalisation, including step-scaling to match at \circ a higher energy.
- Significantly improve the analysis techniques. C.Kelly and T.Wang, arXiv:1911.04582
- In addition there are improvements in non-lattice elements of the determination of \bullet ϵ'/ϵ .

Statistical Improvement
 Statistical more operator operator "

Increasing the statistics from 216 to 1438 configurations, the $\pi\pi$ correlation function is still well described by a single $\pi\pi$ state.

It does not solve the δ_0 puzzle however: ×

$$
\delta_0 = (23.8 \pm 4.9 \pm 2.2)^{\circ} \rightarrow \delta_0 = (19.1 \pm 2.5 \pm 1.2)^{\circ} \quad (\chi^2/\text{dof} = 1.6)
$$

- The δ_0 -puzzle has been resolved by adding more interpolating operators for the \bullet ππ states.
- **I**n particular the inclusion of a σ -like two-quark operator ($\bar{u}u + dd$) has exposed a second state, e.g. for $t_f - t_i = 5$

$$
\det\begin{pmatrix} \langle\pi\pi(t_f)\pi\pi(t_i)\rangle & \langle\pi\pi(t_f)\sigma(t_i)\rangle\\ \langle\sigma(t_f)\pi\pi(t_i)\rangle & \langle\sigma(t_f)\sigma(t_i)\rangle \end{pmatrix} = 0.439(50) \neq 0
$$

- We have also included a third operator giving each pion a larger momentum $\pm (3, 1, 1)\pi/L$.
- At present we have only analysed 741 configurations with the additional \bullet operators. Remainder will be done in the future.

Southampton

 $\delta_0 = (31.7 \pm 0.6)^{\circ}$ from a fit in the range $t = 5$ - 15 (statistical error only). Recall that the fit from dispersion theory is about 34°. $\mathcal{L}_{\mathcal{A}}$

 \bullet The $\pi\pi(3,1,1)$ operator turns out not to be very important.

- We also evaluate the phase-shifts from the correlation functions at non-zero CoM momenta. (Components of momenta given in units of π/*L*.)
- The increasing density of excited states makes it difficult to separate the states \Rightarrow poor plateaus.
- In the right-hand plot, only statistical errors are included and the curve comes \bullet from G.Colangelo, J.Gasser and H.Leutwyler, Nucl. Phys. B **603** (2001) 125

Attempting to determine the phase-shifts with $\vec{p}_{\pi\pi} \neq 0$ [Using Colangelo et al Nucl. Phys. B603 (2001) 125-179]

- We also evaluate the phase-shifts from the correlation functions at non-zero CoM momenta. (Components of momenta given in units of π/*L*.)
- The increasing density of excited states makes it difficult to separate the states \Rightarrow \circ poor plateaus.
- In the right-hand plot, the three points from right-to-left correspond to $(0,0,0)$, \bullet (2,0,0) and (2,2,0) and the curve comes from

G.Colangelo, J.Gasser and H.Leutwyler, Nucl. Phys. B **603** (2001) 125

UNIVERSITY OF Southampton

- \bullet We are currently completing the analysis of the $\langle \pi \pi | Q_i | K \rangle$ matrix elements, the amplitude A_0 and ϵ'/ϵ .
- The above is a sample plot for the matrix element of an unspecified (here) \bullet operator *Q*. $(t = t_{\pi\pi} - t_{op})$

Southampton

arXiv:1505.07863

 \odot Representative fractional systematic errors for contributions to Re A_0 and Im A_0

arXiv:1505.07863

- \odot Systematic error associated with the one-loop truncation in the SMoM $\rightarrow \overline{\text{MS}}$ matching at $\mu = 1.53$ GeV is the largest contribution.
- \bullet We now use step-scaling to perform this matching at $\mu = 4.0$ GeV.

arXiv:1505.07863

- The uncertainty on the Wilson coefficients is estimated by taking the difference between the NLO and LO contributions.
- Partial contributions at NNLO have been calculated and a "new NNLO calculation of the non-EW-penguin part of the weak Hamiltonian does not move the central value", M.Cerdà-Sevilla at Kaon 2019, reporting on work with M.Gorbahn, S.Jäger and A.Kokulu

- Last Friday, Guido Martinelli presented our theoretical framework and results for IB corrections to leptonic decays and the status of the development of the corresponding framework for semileptonic decays.
- The extension of this framework to $K \to \pi\pi$ decays is considerably more complicated.
	- Some first steps, towards including electromagnetism in $K \to \pi \pi$ decays we taken by N.Christ and X.Feng. article are arxiv:1711.09339
- \bullet At the current stage of precision we are not concerned with including $O(1\%)$ corrections.
	- However, because of the $\Delta I = \frac{1}{2}$ rule, the corrections are expected to be amplified.

• Recently a detailed updated study of isospin corrections was presented in the framework of ChPT and the large *N^C* approximation.

V.Cirigliano, H.Gisbert, A.Pich, A.Rodriguez-Sanchez, arXiv:1911.01359 The authors write the formula for ϵ' in the form:

$$
\epsilon' = \frac{i\omega_+e^{i(\delta_2-\delta_0)}}{\sqrt{2}}\,\left[\frac{\mathrm{Im}\,A_2^{\mathrm{exp}}}{\mathrm{Re}\,A_2}-\frac{\mathrm{Im}\,A_0}{\mathrm{Re}\,A_0}\left(1-\hat{\Omega}_{\mathrm{eff}}\right)\right]\,,
$$

where $\omega_+ = \text{Re} \, A_2^+ / \text{Re} \, A_0$ and A_2^+ is A_2 obtained from the physical decay $K^+ \to \pi^+ \pi^0$ at NLO

$$
\hat{\Omega}_{\text{eff}} = \left(17.0^{+9.1}_{-9.0}\right) \times 10^{-2}.
$$

(At LO the corresponding number is 19.5 ± 3.9 .)

This is a very significant effect, certainly requiring further investigation. \bullet

Southampton

- The calculation of $A_0(K\to\pi\pi)$ and ϵ'/ϵ will be very substantially improved over our 2015 result.
	- $\overline{}$ Statistical improvement: 216 \rightarrow 741 configurations (and \rightarrow 1438 configurations in the future).
	- 3 $\pi\pi$ interpolating operators used to separate the ground and excited states.
	- Significantly improved analysis techniques to quantify the effects of **CO** autocorrelations and to obtain correct *p*-values (blocked jacknife errors, inclusion of fluctuations in covariance matrix etc.).
- \circ The δ_0 puzzle now appears to be solved:

 $\delta_0(m_K) = 31.7(6)^\circ$.

Draft of paper is in preparation.

Results will be published "soon".

- \odot Improved calculation of the Wilson Coefficients relevant for $\text{Im}A_0/\text{Re}A_0$ almost complete. M.Cerdà-Sevilla, M.Gorbahn, S.Jäger and A.Kokulu
	- **Matching of the matrix elements renormalised in the RI-SMoM scheme to** $\overline{\text{MS}}$ still only known at one-loop. C.Sturm & C.Lehner, arXiv:1104.4948