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R(D) and R(D∗) “anomalies” [https://hflav.web.cern.ch] (3.1σ)
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c

R(D(∗)) = B(B → D(∗)τ ν̄)/B(B → D(∗)µν̄)

b → sℓ+ℓ− “anomalies” (> 5σ)
[see, e.g., J. Aebischer et al., arXiv:1903.10434]

Qℓ
9 = bL sL

l lγα

Qℓ
10 = bL sL

l lγαγ5

ℓ = e or µ

C7, the Wilson coefficient of Q7 = b sR L

γ

is an important input in the fits. 2



Sample Leading-Order (LO) contributions to C7 in the SM and beyond:

γ γ γ γ γ

u, c, t u, c, t W± W± t t t̃ t̃ µ µ

b W± s b u, c, t s b H± s b χ± s b LQ s

︸ ︷︷ ︸

⇒ MH± > ∼ 800 GeV

in the 2HDM-II
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HFLAV, arXiv:1909.12524: Bexp
sγ = (3.32 ± 0.15) × 10−4

for Eγ > E0 = 1.6 GeV ≃ mb

3
,

(±4.5%)

averaging CLEO, BELLE and BABAR with E0 ∈ [1.7, 2.0] GeV, and then extrapolating to E0 = 1.6 GeV.

TH requirement: E0 should be large
(
∼ mb

2

)
but not too close to the endpoint (mb − 2E0 ≫ ΛQCD).
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3
,

(±4.5%)

averaging CLEO, BELLE and BABAR with E0 ∈ [1.7, 2.0] GeV, and then extrapolating to E0 = 1.6 GeV.

TH requirement: E0 should be large
(
∼ mb

2

)
but not too close to the endpoint (mb − 2E0 ≫ ΛQCD).

With the full BELLE-II dataset, a ±2.6% uncertainty in the world average for Bexp
sγ is expected.

SM calculations must be improved to reach a similar precision.
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Determination of B(B̄ → Xsγ) in the SM:
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The effective Lagrangian: Lweak ∼ ∑

i Ci Qi

Eight operators Qi matter for BSM
sγ when the NLO EW and/or CKM-suppressed effects are neglected:

bL sL

cL cL

b sR L

γ
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g

bL sL

q q

Q1,2 Q7 Q8 Q3,4,5,6

current-current photonic dipole gluonic dipole penguin
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NLO (O(αs)) – last missing pieces being evaluated by Tobias Huber and Lars-Thorben Moos
[arXiv:1912.07916]

Most important @ NNLO (O(α2
s)): Ĝ77, Ĝ17, Ĝ27

known interpolated
between the mc ≫ mb and mc = 0 limits [arXiv:1503.01791]

⇒ ± 3% uncertainty in BSM
sγ
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Sample diagrams contributing to Ĝ27 @ NNLO:

c

q

b s b

5



Sample diagrams contributing to Ĝ27 @ NNLO:
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c

q

b s b

1. Generation of diagrams and performing the Dirac algebra to express everything in terms of
(a few) ×105 four-loop two-scale scalar integrals with unitarity cuts (O(500) families).

2. Reduction to master integrals with the help of Integration By Parts (IBP) [KIRA, FIRE, LiteRed].
O(1 TB) RAM and weeks of CPU needed for the most complicated families.

3. Extending the set of master integrals Mk so that it closes under differentiation

with respect to z = m2
c/m

2
b. This way one obtains a system of differential equations

d

dz
Mk(z, ǫ) =

∑

l

Rkl(z, ǫ)Ml(z, ǫ), (∗)

where Rnk are rational functions of their arguments.

4. Calculating boundary conditions for (∗) using automatized asymptotic expansions at mc ≫ mb.

5. Calculating three-loop single-scale master integrals for the boundary conditions.

6. Solving the system (∗) numerically [A.C. Hindmarsch, http://www.netlib.org/odepack]

along an ellipse in the complex z plane. Doing so along several different
ellipses allows us to estimate the numerical error. 5



Sample three-loop propagator-type integrals that parameterize large-z expansions of the master integrals:
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Sample three-loop propagator-type integrals that parameterize large-z expansions of the master integrals:

Contributions to Ĝ27(E0 = 0) from diagrams with closed loops of massless fermions

massless, 2-body
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agrees with hep-ph/0302051 agrees with hep-ph/9903305 new

arXiv:0707.3090 arXiv:1009.5685 ∆Ĝ27 ≃ 3[0.164 + 0.13z
1

2 − 21.51z

+68.10z
3

2 − 46.12z2

−(3.23z − 18.23z2) ln z]

And from diagrams with closed loops of massive fermions ⇑
massive Hmb

L, 2-body
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UV renormalization has been carried out using the results from arXiv:1702.07674. 6



Non-perturbative contribution from gluon-to-photon conversion
in the QCD medium.

It was first considered by Lee, Neubert & Paz in hep-ph/0609224. It originates from
hard gluon scattering on the valence quark or a “sea” quark that produces
an energetic photon. The quark that undergoes this Compton-like scattering
is assumed to remain soft in the B̄-meson rest frame to ensure effective
interference with the leading “hard” amplitude. Without interference
the contribution would be negligible (O(α2

sΛ
2/m2

b)).

Suppression by Λ/mb can be understood as originating from dilution of the target
(size of the B̄-meson ∼ Λ−1).
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δΓc
Γ

≃ −1
3
∆0−

[

1 + 2 D−C
C−B

]

= −1
3
(−0.48 ± 1.49 ± 0.97 ± 1.15)% × (1 ± 0.3) = (0.16 ± 0.74)%
︸ ︷︷ ︸

Belle, arXiv:1807.04236, E0 = 1.9 GeV

Recall: (x ± σx)(y ± σy) = xy ±
√

(xσy)2 + (yσx)2 + (σxσy)2 7



The resolved photon contribution to the Q7-Q1,2 interference.
M.B. Voloshin, hep-ph/9612483; A. Khodjamirian, R. Rückl, G. Stoll and D. Wyler, hep-ph/9702318;

Z. Ligeti, L. Randall and M.B. Wise, hep-ph/9702322; G. Buchalla, G. Isidori, G. Rey, hep-ph/9705253;

M. Benzke, S.J. Lee, M. Neubert, G. Paz, arXiv:1003.5012; A. Gunawardana, G. Paz, arXiv:1908.02812.

〈B̄| |B̄〉
2 7

c

δN(E0) = (C2 − 1
6
C1)C7

[

− µ2
G

27m2
c

+ Λ17
mb

]

︸ ︷︷ ︸

−κV µ2
G

27m2
c
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ω1 ↔ gluon momentum, F (x) = 4x arctan2
(
1/

√
4x − 1

)
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ω1 ↔ gluon momentum, F (x) = 4x arctan2
(
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The soft function h17:

h17(ω1, µ) =
∫

dr
4πMB

e−iω1r〈B̄|(h̄Sn̄)(0)n̄6 iγ⊥
α n̄β(S†

n̄gG
αβ
s Sn̄)(rn̄)(S†

n̄h)(0)|B̄〉 (mb−2E0 ≫ ΛQCD)

A class of models for h17: h17(ω1, µ) = e
− ω2

1
2σ2

∑

n a2nH2n

(
ω1

σ
√

2

)

, σ < 1 GeV

Hermite polynomials

Constraints on moments (e.g.):
∫
dω1h17 = 2

3
µ2

G,
∫
dω1ω

2
1h17 = 2

15
(5m5 + 3m6 − 2m9).
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G+P numerically:
Λ17 ∈ [−24, 5] MeV for mc = 1.17 GeV.
Factor-of-3 improvement w.r.t. BLNP.

In our code: κV = 1.2 ± 0.3.
Warning: scheme for mc!
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Non-perturbative contribution proportional to |C8|2
A. Kapustin, Z. Ligeti & H. D. Politzer [hep-ph/9507248],

A. Ferroglia & U. Haisch [arXiv:1009.2144],

focused on the collinear logs ln mb

ms
in the corresponding contribution to P (E0).

⇒ fragmentation functions ⇒ effects below 1% in Bsγ.
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pointed out non-perturbative effects that are unrelated to the collinear logs. Their estimated

range is [−0.3, 1.9]% of Bsγ for the overall non-perturbative effect being proportional to |C8|2,
w.r.t. the mb

ms
= 50 case in P (E0), for µb = 1.5 GeV and E0 = 1.6 GeV.
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the fragmentation function estimates.

M. Benzke, S.J. Lee, M. Neubert & G. Paz [arXiv:1003.5012]

pointed out non-perturbative effects that are unrelated to the collinear logs. Their estimated

range is [−0.3, 1.9]% of Bsγ for the overall non-perturbative effect being proportional to |C8|2,
w.r.t. the mb

ms
= 50 case in P (E0), for µb = 1.5 GeV and E0 = 1.6 GeV.

Numerically, we can reproduce this range by performing a replacement

ln mb
ms

→ κ88 ln 50 with κ88 = 1.7 ± 1.1

in all the perturbative contributions proportional to |C8|2.

The [ln 10, ln 50] range remains used in other (small) terms where collinear logs arise.
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Updated SM predictions for Bsγ and Rγ ≡ B(s+d)γ/Bcℓν̄ (with E0 = 1.6 GeV):

Bsγ = (3.40 ± 0.17) × 10−4
compare to (3.36 ± 0.23) × 10−4 in arXiv:1503.01789

(±5.0%) (±6.9%)

Rγ = (3.35 ± 0.16) × 10−3
compare to (3.31 ± 0.22) × 10−3 in arXiv:1503.01789

(±4.8%) (±6.7%)
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compare to (3.31 ± 0.22) × 10−3 in arXiv:1503.01789

(±4.8%) (±6.7%)

Current uncertainty budget in Bsγ:

±3% higher-order, ±3% interpolation in mc, ±2.5% parametric (including δΓc

Γ
, κV and κ88)

When the interpolation gets removed but nothing else changes:√
32 + 2.52% = 3.9% – still somewhat behind the expected experimental ±2.6%.

Shifts in uncertainties related to δΓc

Γ
, κV and κ88:

formerly: 1.25% + 2.85% + 1.10% = 5.20% (in quadrature: 3.30%)

at present: 0.74%+0.88%+0.92% = 2.54% (in quadrature: 1.48%)
√

1.482 + 2.012% = 2.49% ≃ 2.5%
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Summary for the radiative decay

• Perturbative NNLO calculations of Γ[b → Xp
sγ] that aim at removing

the mc-interpolation have been finalized for diagrams involving closed
fermion loops on the gluon lines. We confirm several published

results, and supplement them with a previously unknown (tiny) piece.
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• The 2019 reanalysis of non-perturbative effects in the Q1,2-Q7
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uncertainty gets reduced by a factor of three.

• The updated SM predictions read Bsγ = (3.40 ± 0.17) × 10−4

and Rγ = (3.35 ± 0.16) × 10−3 for E0 = 1.6 GeV.
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Determination of |Vcb| from the inclusive B̄ → Xcℓν rate and spectra

|Vcb| = (42.00 ± 0.64) × 10−3
[P. Gambino, K. J. Healey and S. Turczyk, arXiv:1606.06174]

︸ ︷︷ ︸

1.5%

roughly:
√

(1.0%)2 + (1.1%)2 ≃ 1.5%
perturbative other

O(α3
s)
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Impact on the uncertainty in the SM prediction for B(Bs → µ+µ−):
√

(3.0%)2 + (2.3%)2 ≃ 3.8%
|Vcb|2 other
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|Vcb|2 other

[ C. Bobeth, M. Gorbahn, T. Hermann, MM, E. Stamou and M. Steinhauser, arXiv:1311.0903],
[ M. Beneke, C. Bobeth and R. Szafron, arXiv:1908.07011].

Impact on the uncertainty in the SM prediction for ǫK:
√

(5.3%)2 + (6.4%)2 ≃ 8.3% (roughly)

|Vcb|4 other

using Eq. (17) of [ J. Brod, M. Gorbahn and E. Stamou, arXiv:1911.06822 ].
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Feasibility of b → Xcℓν̄ @ N3LO
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Possible IBP outsourcing: Fraunhofer Institute for Industrial Mathematics
[D. Bendle et al., arXiv:1908.04301]
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The “hard” contribution to B̄ → Xsγ
J. Chay, H. Georgi, B. Grinstein PLB 247 (1990) 399.
A.F. Falk, M. Luke, M. Savage, PRD 49 (1994) 3367.

Goal: calculate the inclusive sum ΣXs

∣
∣C7(µb)〈Xsγ|O7|B̄〉 + C2(µb)〈Xsγ|O2|B̄〉 + ...

∣
∣2

γ γ
q q

B̄ B̄7 7

Im{ } ≡ ImA

The “77” term in this sum is “hard”. It is related via the
optical theorem to the imaginary part of the elastic forward

scattering amplitude B̄(~p = 0)γ(~q) → B̄(~p = 0)γ(~q):

When the photons are soft enough, m2
Xs

= |mB(mB −2Eγ)| ≫ Λ2 ⇒ Short-distance dominance ⇒ OPE.

However, the B̄ → Xsγ photon spectrum is dominated by hard photons Eγ ∼ mb/2.

Once A(Eγ) is considered as a function of arbitrary complex Eγ,
ImA turns out to be proportional to the discontinuity of A

at the physical cut. Consequently,

ImEγ

1 Emax

γ ReEγ [GeV]

≃ 1

2
mB

∫ Emax
γ

1 GeV

dEγ ImA(Eγ) ∼
∮

circle

dEγ A(Eγ).

Since the condition |mB(mB − 2Eγ)| ≫ Λ2 is fulfilled along the circle,
the OPE coefficients can be calculated perturbatively, which gives

A(Eγ)|
circle

≃
∑

j

[

F
(j)
polynomial(2Eγ/mb)

m
nj

b (1 − 2Eγ/mb)kj
+ O (αs(µhard))

]

〈B̄(~p = 0)|Q(j)
local operator|B̄(~p = 0)〉.

Thus, contributions from higher-dimensional operators are suppressed by powers of Λ/mb.

At (Λ/mb)
0: 〈B̄(~p)|b̄γµb|B̄(~p)〉 = 2pµ ⇒ Γ(B̄ → Xsγ) = Γ(b → Xparton

s γ) + O(Λ/mb).

At (Λ/mb)
1: Nothing! All the possible operators vanish by the equations of motion.

At (Λ/mb)
2: 〈B̄(~p)|b̄vDµDµbv|B̄(~p)〉 ∼ mB µ2

π,

〈B̄(~p)|b̄vgsGµνσ
µνbv|B̄(~p)〉 ∼ mB µ2

G,

The HQET heavy-quark field: bv(x) = 1
2
(1 + v/)b(x) exp(imb v · x) with v = p/mB. 17



The same method has been applied to the 3-loop counterterm diagrams
[MM, A. Rehman, M. Steinhauser, PLB 770 (2017) 431]

Master integrals:

I1 I7 I13x

I2 I8 I14x
x

I3 I9 I15
x

I4 I10 I16
x

I5 I11 I17

I6 I12 I18
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Results for the bare NLO contributions up to O(ǫ):

Ĝ
(1)2P
27 = − 92

81ǫ
+ f0(z) + ǫf1(z)

z→0−→ − 92
81ǫ

− 1942
243

+ ǫ
(
−26231

729
+ 259

243
π2

)
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5

10

10- 7 10- 5 0.001 0.1 10

-40

-30

-20

-10

0

f0(z) f1(z)

z z

Dots: solutions to the differential equations and/or the exact z → 0 limit.

Lines: large- and small-z asymptotic expansions

Small-z expansions of Ĝ
(1)2P
27 :

f0 from C. Greub, T. Hurth, D. Wyler, hep-ph/9602281, hep-ph/9603404,

A. J. Buras, A. Czarnecki, MM, J. Urban, hep-ph/0105160,

f1 from H.M. Asatrian, C. Greub, A. Hovhannisyan, T. Hurth and V. Poghosyan, hep-ph/0505068.

2 7
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Analogous results for the 3-body final state contributions (δ = 1):

Ĝ
(1)3P
27 = g0(z) + ǫg1(z)

z→0−→ − 4
27

− 106
81

ǫ

2 7

10- 7 10- 5 0.001 0.1 10
-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

10- 7 10- 5 0.001 0.1 10

-1.5

-1.0

-0.5

0.0

0.5g0(z) g1(z)

z z

Dots: solutions to the differential equations and/or the exact z → 0 limit.

Lines: exact result for g0, as well as large- and small-z asymptotic expansions for g1.

g0(z) =







− 4
27

− 14
9
z + 8

3
z2 + 8

3
z(1 − 2z) s L + 16

9
z(6z2 − 4z + 1)

(
π2

4
− L2

)

, for z ≤ 1
4
,

− 4
27

− 14
9
z + 8

3
z2 + 8

3
z(1 − 2z) t A + 16

9
z(6z2 − 4z + 1)A2, for z > 1

4
,

where s =
√

1 − 4z, L = ln(1 + s) − 1
2

ln 4z, t =
√

4z − 1, and A = arctan(1/t).
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