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The strongest experimental constraint on C; comes from B, —
— the CP- and isospin-averaged BR of B — X,v and B — Xj;v.

(B°, B7) (B°, BT)

HFLAV, arXivi1909.12524: BOP = (3.32 £ 0.15) X 10™* for B, > By = 1.6 GeV ~ ™,
(£4.5%)

averaging CLEO, BELLE and BABAR with E, € [1.7,2.0] GeV, and then extrapolating to Ey = 1.6 GeV.

TH requirement: Ey should be large (N %) but not too close to the endpoint (m, — 2E¢ > Aqcp)-

With the full BELLE-II dataset, a +-2.6% uncertainty in the world average for Bgzp is expected.

SM calculations must be improved to reach a similar precision.
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NLO (O(as)) — last missing pieces being evaluated by Tobias Huber and Lars-Thorben Moos
Most important @ NNLO (O(aﬁ)). G77, G17, G27 [arXiv:1912.07916]

known interpolated
between the M. > My and M, = 0 limits [arXiv:1503.01791]

= =+ 3% uncertainty in BS}YVI
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1. Generation of diagrams and performing the Dirac algebra to express everything in terms of
(a few) x10° four-loop two-scale scalar integrals with unitarity cuts (O(500) families).

2. Reduction to master integrals with the help of Integration By Parts (IBP) [KIRA, FIRE, LiteRed].
O(1TB) RAM and weeks of CPU needed for the most complicated families.

3. Extending the set of master integrals M, L so that it closes under differentiation

with respect to Z — mi / m% This way one obtains a system of differential equations
d
— My (z,€) = g Ry (z, €) Mi(z,€), (%)
dz l

where Rnk: are rational functions of their arguments.
4. Calculating boundary conditions for (*) using automatized asymptotic expansions at 77, > M.
5. Calculating three-loop single-scale master integrals for the boundary conditions.

6. Solving the system (%) numerically [A.C. Hindmarsch, http://wuw.netlib.org/odepack]
along an ellipse in the complex Z plane. Doing so along several different
ellipses allows us to estimate the numerical error.



Sample three-loop propagator-type integrals that parameterize large-z expansions of the master integrals:
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Sample three-loop propagator-type integrals that parameterize large-z expansions of the master integrals:

Contributions to G27(Ey = 0) from diagrams with closed loops of massless fermions
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UV renormalization has been carried out using the results from arXiv:1702.07674. 6]



Non-perturbative contribution from gluon-to-photon conversion
in the QCD medium.

It was first considered by Lee, Neubert & Paz in hep-ph/0609224. It originates from
hard gluon scattering on the valence quark or a “sea” quark that produces

an energetic photon. The quark that undergoes this Compton-like scattering

is assumed to remain soft in the B-meson rest frame to ensure effective

interference with the leading “hard” amplitude. Without interference
the contribution would be negligible (O(a?A?/m})).

Suppression by A/m,; can be understood as originating from dilution of the target
(size of the B-meson ~ A™1).
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It was first considered by Lee, Neubert & Paz in hep-ph/0609224. It originates from
hard gluon scattering on the valence quark or a “sea” quark that produces

an energetic photon. The quark that undergoes this Compton-like scattering

is assumed to remain soft in the B-meson rest frame to ensure effective
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Isospin-averaged decay rate: I' ~ A+ %(B +C)(Qu+Qu) +DQ; = A+ 6T,

Isospin asymmetry: Ag_ ~ %(Qu — Qa)

Qu + Qd + Qs =0 SU(S)F violation
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Ag— — (C—B)(Qu—Qy) T Qq—Qu C—B arXiv:0911.1651
511:0 ~ —2IA_ [1 + 2 gf—g} = —%(To.zxs +1.494+0.97 & 1.1/5)% x (1+0.3) = (0.16 +0.74)%

Belle, arXiv:1807.04236, E, = 1.9 GeV

Recall: (z + 0,)(y £ o0y) =xy £ \/(x0y)? + (yoz)? + (0.04)2



The resolved photon contribution to the Q7-Q; 2 interference.

M.B. Voloshin, hep-ph/9612483; A. Khodjamirian, R. Riickl, G. Stoll and D. Wyler, hep-ph/9702318;
Z. Ligeti, L. Randall and M.B. Wise, hep-ph/9702322; G. Buchalla, G. Isidori, G. Rey, hep-ph/9705253;
M. Benzke, S.J. Lee, M. Neubert, G. Paz, arXiv:1003.5012; A. Gunawardana, G. Paz, arXiv:1908.02812.
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Non-perturbative contribution proportional to |Cs|?

A. Kapustin, Z. Ligeti & H. D. Politzer [hep-ph/9507248],
A. Ferroglia & U. Haisch [arXiv:1009.2144],

focused on the collinear logs In > in the corresponding contribution to P(Ey).

= fragmentation functions = effects below 1% in B;,.
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M. Benzke, S.J. Lee, M. Neubert & G. Paz [arXiv:1003.5012]

pointed out non-perturbative effects that are unrelated to the collinear logs. Their estimated
range is [—0.3,1.9]% of Bs, for the overall non-perturbative effect being proportional to |Cs|?,
w.r.t. the ™ = 50 case in P(Ey), for pu; = 1.5 GeV and Ey = 1.6 GeV.

S

Numerically, we can reproduce this range by performing a replacement

In 7t — KggIn 50 with keg = 1.7 £ 1.1
S
in all the perturbative contributions proportional to |Cg|?.

The [In 10, In 50| range remains used in other (small) terms where collinear logs arise.
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By, = (3.40 + 0.17) x 10~*

(£5.0%)

= (3.35 £ 0.16) x 1073

(£4.8%)

Current uncertainty budget in B,.:

+3% higher-order, =£+3% interpolation in m,,

compare to (3.36 & 0.23) x 10™* in arXiv:1503.01789
(£6.9%)

compare to (3.31 £ 0.22) x 1072 in arXiv:1503.01789

(£6.7%)

+2.5% parametric (including - T, kv and Kgg)

When the interpolation gets removed but nothing else changes:
V32 + 2.52% = 3.9% — still somewhat behind the expected experimental +2.6%.

Shifts in uncertainties related to 6F°, Ky and Kgg:

r

formerly: 1.25% + 2.85% + 1.10% = 5.20% (in quadrature: 3.30%)
at present: 0.74%+0.88%+0.92% = 2.54% (in quadrature: 1.48%) v1.482 + 2.012% = 2.49% ~ 2.5%
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® Perturbative NINLO calculations of I'[b — XP?+| that aim at removing

the minterpolation have been finalized for diagrams involving closed
fermion loops on the gluon lines. We confirm several published
results, and supplement them with a previously unknown (tiny) piece.
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® Perturbative NINLO calculations of I'[b — XP?+| that aim at removing

the minterpolation have been finalized for diagrams involving closed
fermion loops on the gluon lines. We confirm several published
results, and supplement them with a previously unknown (tiny) piece.

® The isospin asymmetry Ay_ measured by Belle in 2018 helps to
suppress non-perturbative uncertainties in B,,, especially those
arising in the Q;-(Q)s interference.

® The 2019 reanalysis of non-perturbative effects in the Q) »-Q~

interference by Gunawardana and Paz implies that the corresponding
uncertainty gets reduced by a factor of three.

® The updated SM predictions read B, = (3.40 £ 0.17) x 10~
and R, = (3.35 £ 0.16) x 107° for Ey = 1.6 GeV.
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——
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Impact on the uncertainty in the SM prediction for B(B, — putp™):
vV (3.0%)2 + (2.3%)? ~ 3.8%

|Ves|? other

C. Bobeth, M. Gorbahn, T. Hermann, MM, E. Stamou and M. Steinhauser, arXiv:1311.0903],
M. Beneke, C. Bobeth and R. Szafron, arXiv:1908.07011].

Impact on the uncertainty in the SM prediction for eg:

vV (5.3%)2 + (6.4%)% ~ 8.3%  (roughly)

|Vep | other
using Eq. (17) of [ J. Brod, M. Gorbahn and E. Stamou, arXiv:1911.06822 ]|.




Inclusive Decays

- Optical Theorem
- OPE - Heavy Quark Expansion (HQE): pp, = mpvg + R

Observables can be written as:

s T pi r IOLS

dl =dlry +dl, mb +dr%m2 +drpo3 +d pLSmB + .

- dI; are computed in perturbative QCD

- The non-perturbative dynamics is enclosed into
the HQE parameters: pir, t6, po, prs ~ (B| byiD* ... ID¥T . by |B)

- HQE parameters are extracted from data.

Reviews:
Benson, Bigi, Mannel, Uraltsev, Nucl.Phys. B665 (2003) 367;
Dingfelder, Mannel, Rev.Mod.Phys. 88 (2016) 035008.

M. Fael B-Lunch Jan. 21st 2020
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Feasibility of b — X v @ N3LO

L

contribution to I contribution to dI'/dq? for q? = M?

Let us consider g? = m?:

Im % from %o

D

Real boundary condition for the
differential equations at m. > my

Possible IBP outsourcing: Fraunhofer Institute for Industrial Mathematics
[D. Bendle et al., arXiv:1908.04301]
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44 99 . . D J. Chay, H. Georgi, B. Grinstein PLB 247 (1990) 399.
The “hard” contribution to B — X7 A.F. Falk, M. Luke, M. Savage, PRD 49 (1994) 3367,

— — 2
Goal: calculate the inclusive sum EXS C7<,Lbb> <X3’7‘O7‘B> + OQ(,LLb> <XS”Y|OQ|B> + ’
The “77” term in this sum is “hard”. It is related via the
optical theorem to the imaginary part of the elastic forward 2~

scattering amplitude B(p = 0)v(q) — B(p = 0)v(q): Im{

}=ImA
7 7 B

When the photons are soft enough, m% = |mp(mp—2E,)| > A® = Short-distance dominance = OPE.
However, the B — X,~v photon spectrum is dominated by hard photons E, ~ my/2.

Once A(E,) is considered as a function of arbitrary complex E.,,

ImA turns out to be proportional to the discontinuity of A Im £,
at the physical cut. Consequently, .
e 14’1_77E/L/nax \\'. Re F, [GeV]
/ dE, Im A(E.) ~ ¢ dE, A(E.). T |
1 GeV circle N\ ~ %mB
Since the condition |mg(mp — 2E,)| > A? is fulfilled along the circle,

the OPE coefficients can be calculated perturbatively, which gives

FY
~ olynom1a1(2E’Y/mb) D/ = @) D=
A(E7)|c1rc1e Z [ n; 1 _ 2E7/mb)k + o (as(ﬂlhard)) (B(p - 0)|Qlocal 0perat0r|B(p - 0)>

Thus, contrlbutlons from higher-dimensional operators are suppressed by powers of A/my,.

At (A/my)°: (B(P)|by"b|B(p)) = 2p* = T(B — Xsy) =T(b— XPatony) + O(A/my).
At (A/my)t: Nothing! All the possible operators vanish by the equations of motion.
At (A/my)% (B(B)6,D'Dub | B@E)  ~ mp i,

(B(P)|bygsG 0" by| B(P)) ~ mp B
The HQET heavy-quark field: b,(z) = 3(1 + #)b(z) exp(imy v - ) with v =p/mp.



The same method has been applied to the 3-loop counterterm diagrams
[MM, A. Rehman, M. Steinhauser, PLB 770 (2017) 431]

Master

integrals:

O LRSI
S S R T P
B0 D e
LG - e <) m e
e R R




Results for the bare NLO contributions up to O(e):

~(1)2P 92 z—0 92 1942 26231 | 259 __2
Gor = — g T fo(2) + €fi(2) ? TBle 243 +e(— 729 1T 2437 )

10

fo(2) | |

~20+ / .

-30

10-7 10-5 0.001 0.1 10 10-7 10-5 0.001 0.1 10

Dots: solutions to the differential equations and/or the exact z — 0 limit.

Lines: large- and small-z asymptotic expansions )\% :
(1)2P, @ E
7 ° |

Small-z expansions of G’z

fo from C. Greub, T. Hurth, D. Wyler, hep-ph/9602281, hep-ph/9603404,
A. J. Buras, A. Czarnecki, MM, J. Urban, hep-ph/0105160,
f1 from H.M. Asatrian, C. Greub, A. Hovhannisyan, T. Hurth and V. Poghosyan, hep-ph/0505068.



Analogous results for the 3-body final state contributions (6 = 1):

A ~>—0 !
Gg17)3P — go(z) —|— egl(z) i) _% — %6 %
B ‘ -®

|
2 | 4
0.10 i T ] | I ]
go(2) : s g1(2) : :
0.05 - ! 1 f TN 1

r f S 1 00F e Tt oot

oof [ e ]

L [ )

[ i L : J
-005 7 —05F . -
~010 / . [ ]

i ~10 | |
_015 ; -------------------- p I ;

A e e B p——eeeeceecceces,, [ J
_0_207 ! ! ! ! Z ] -15[ ! \ e \ \ z7

107 10> 0.001 0.1 10 10~ 7 10°° 0.001 0.1 10

Dots: solutions to the differential equations and/or the exact z — 0 limit.
Lines: exact result for gy, as well as large- and small-z asymptotic expansions for g;.

(2) —i—%z—l—gz2+§z(1—2z)sL —|—%z(6z2—4z—|—1)(%2—L2), for z < 3,
gol\z) =
—= — %z—i— gzz —|—§z(1 —22)tA + %z(6z2 — 4z + 1) A?, for z > I,

where s =+/T1—4z, L=In(1+s)—3;Indz, t=+/4z—1, and A = arctan(1/t).



