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Motivation

° Holography
o (Central question: how does gravity emerge from non-gravitational dual!
o Hints that entanglement structure plays a crucial role...

~ characterize aspects of entanglement structure
which correspond to geometric states

e

states in a holographic CFT which
describe a classical bulk geometry | |
conveniently diagnosed

by entanglement entropy

° Quantum Information
o Understand information quantities derived from entanglement entropy



OUTLIN

Motivation & Background
o Entanglement entropy, holographic entropy cone & arrangement

2 important constructs

o V-space ('proto-entropy subspace” / "'min-cut subspace”)
o Pattern of marginal independence (PMI)

2 useful tools

» Holographic graph models
o Fine-/ coarse- graining

Malin result

o Thm & proof
o |Implications & open questions




-ntanglement entropy

For CFT state |¢) and bi-partition H =Ha @ H 4
~ reduced density matrix pa = Tr z|1) (Y]
FE= S(A) = —Trpa logpa

° Decompose CFT into N elementary subsystems ("colors")
H=HaHpRHc® - OHipe

N

° ~ entropy vector in D = 2N - | dimensional entropy space

egforN=3,  §={S(A),S(B),S(C),S(AB),S(AC), S(BC), S(ABC)}

conceptually useful to consider large N...



-ntropy relations

* Physically realizable entropy vectors are restricted

o Universal restrictions:

. Sub-additivity (SA) S(A) + S(B) > S(AB)
= Mutual information positivity I(A:B)=S(A)+S(B)—-S(AB) >0
» Strong sub-additivity (SSA) S(AB)+ S(BC) > S(B) + S(ABC)

=> Mutual information monotonicity I(A:C|B)=I1(A:BC)—1I(A:B)>0

.. (expect more relations with increasing N)

° Further restrictions, depending on the system

° Qur task: understand the full set in holography



-ntropy cone

{All physically allowed entropy vectors} = convex cone in entropy space

2 useful characterizations:

/ N\

intersection of half-spaces (=polyhedron)
delineated by entropy inequalrties
S(AB) S(AB)

convex hull of extreme rays

when restricted to geometric states in holography ~ holographic entropy cone (HEC)
[Bao, Nezami, Ooguri, Stoica, Sully, Walter "1 5]



[ -ntropy cone for N=2

> {geometric states in holographic CFT} ¢ {all quantum states}

° but for N=2, quantum entropy cone = holographic entropy cone:

S(AB)

S(A) + S(B) > S(AB)
S(A) + S(AB) > S(B)

S(B)+ S(AB) > S(A)

* For N>2, holographic entropy cone ¢ quantum entropy cone,
( = specified by additional entropy inequalities)



—ntropy cone for N=3

* Quantum entropy cone specified by {SA,
/

6 independent (non-redundant) inequalities {uplifts, permutations, purifications}

cartoon of 3-d cross-section of R/ (not including the origin)



—ntropy cone for N=3

* Quantum entropy cone specified by {SA, SSA}
S

6 independent (non-redundant) inequalities {uplifts, permutations, purifications}




—ntropy cone for N=3

* Quantum entropy cone specified by {SA, SSA}
/

6 independent (non-redundant) inequalities {uplifts, permutations, purifications}

° Holographic entropy cone specified by {SA, MMI}
/

single (permutation/purification symmetric) inequalrty



-ntropy relations for N=3

° Universal:
» Sub-additivity (SA) S(A) + S(B) > S(AB)
= Mutual information positivity I(A:B)=S(A)+S5(B)—-S(AB) >0
» Strong sub-additivity (SSA) S(AB)+ S(BC) > S(B) + S(ABC)
= Mutual information monotonicity ~ [(A:C|B)=1(A:BC)—-1(A:B) >0

° [rue In holography:
o Monogamy of mutual information (MMI)
S(AB) + S(BC)+ S(CA) > S(A)+ S(B) +S(C)+ S(ABC)
= Tripartite information I3(A: B:C)=I1(A:B)+I1(A:C)—I1(A: BC)<0

NB. geometric proof similar to that of SSA [Hayden, Headrick, Maloney]
but distinguished via bit thread reformulation [Freedman, Headrick]

~ MMI more deeply rooted in bulk locality than SSA [VH]



-ntropy cone for N=4,5,6

° Quantum entropy cone not known v N > 4.
~ Important open problem in Quantum Information Science

° N=4 holographic entropy cone however still consists of only {SA, MMI}
(now gives 20 independent inequalities)

* N=5 holographic entropy cone (HEC) has 5 further inequalities
specified in [Bao, Nezami, Ooguri, Stoica, Sully, Walter, ' | 5]

& proved to be the complete set in [Herndndez-Cuenca, 9]

~ N=5 HEC has 8 orbits of facets (total 3/2) and |9 orbits of extreme rays (total 2267/)

° N=6 HEC (yet TBD) has many further inequalities!
~ N=6 HEC has > 140 orbits of facets and > 3910 orbits of extreme rays

[Avis & Herndndez-Cuenca 2], [w.l.p., Hernandez-Cuenca]

?. How do we find HEC systematically & understand its meaning / implications!



Original Strategy

* Enlarge the structure of interest:

o Linear combinations of composite subsystem EEs such as I(A : B)
or I3(A: B: C) are called information quantities

o General form, e.g. for N=3:

Q(g) = qa S(A) +gB S(B) + qc S(C) +qapB S(AB) + qac S(AC) + qBC S(BC) + qgaBcC S(ABC)

-

o (Q(S) > 0 gives entropy inequality, but it is useful to consider all
interesting information quantities Q(g) ,1.e. ones which:

e can vanish for some configurations in geometric states
o are independent of other such 1Qs (we'll call these primitive)

* Fach Q(g) = ( specifies a hyperplane in entropy space

~ full set of primitive |Qs = hyperplane arrangement

» Utllize holography...




{ Holographic Entanglement Entropy }

Proposal [RT=Ryu &Takayanagi, 06] for static configurations,
covariantized by [HRT=VH, Rangamani, Takayanagi,07] for time-dependent situations:

Entanglement entropy S(A) for a boundary bulk S

region A is captured by the area of a bulk : :
extremal surface s homologous to A ;
boundary

for multiple candidates, choose least area one.

Allows for phase transitions, e.g. jump in surface for S(AB):

@ a ~/u




Proto-entropy

* Entanglement entropy S(A) Is infinite whenever 9A # ()

= can't localize in entropy space (unless we take a cutoff §€(x> — but depends on g(x))

° However, certain information quantities are UV-finite & e-indep.
o Ex.: saturation of SA: I(A:B)=S5(A)+S(B)—S(AB) =0

even ratio S(A)/S(B)
s cutoff dependent

same parts of surfaces appear on both sides of the equality
= cancel out iIndependently of the cutoff

= under varying cutoff, vectors §€(x) span lower-dimensional subspace of entropy space.

° Suggests hyperplanes are the natural / fundamental constructs

o [hink of QI relations as formal combinations of bulk extremal surfaces
(~ proto-entropy), rather than their areas...
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V-space

° Def. Vtspace = intersection of all {Q=0} hyperplanes

o linear subspace of entropy space, of dimensionality [ <d <D

° Meaning & Utllity
e every configuration has a unique V-space associated to it

o captures the essential features of multipartrte entanglement structure
implemented by the given configuration (insensitive to irrelevant detalls)

o most refined (meaningfully localized in entropy space) such subspace
o discrete structure

* Unifying construct:
o extreme rays = [-dim. V-space
o facets = (D-1)-dim. V-space



PMI

° Def: Pattern of Marginal Independence (PMI) Is a specification of
full set of subsystems { X,Y } for which [(X:Y) = 0.

o marginals = reduced density matrices
o independent If factorized structure

° Meaning & Utllity
o every entropy vector S has a unique PM|
o conceptually simpler (more primal) construct
o likewise a linear subspace of entropy space, discrete structure
o = Intersection of all saturated SA or AL hyperplanes
o = contains the V-space

Key Q: what is the exact relation between V-space and PMI?



Marginal Independence Problem

° However, not all PMls are possible, due to
e mathematical inconsistency
e.g violates the identity  I2(A: BC)+ I3(B: C) = 13(B : AC) + I:(A : C)

o physical inconsistency

violates entropy inequality, e.g. SSA = I,(A: BC)=0 = I3(A:B)=0

° Marginal Independence Problem (MIP): what PMls are realizable?

o OMIP: what PMls are realizable in QM
considered In [Hernandez-Cuenca,VH, Rangamani, Rota]

o HMIP: what PMls are realizable by geometric states in holography?
W.I.p. [He, Herndndez-Cuenca, VH, Rota]

o useful mathematical tools: hyperplane arrangement lattices & matroids
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{ Holographic graph models }

» Convenient representation of proto-entropies: abstracts away
the discrete elements from a holographic configuration

o vertices = cells iIn RT surface network

o edges = pieces of RT surfaces separating neighboring regions, with
welght = corresponding area cf. [Bao, Nezami, Ooguri, Stoica, Sully, Walter]

& a /@

mincut structure specified by cut edges /\_T/

P
e
first phase incorporated by 7A<
lect [t te mincut
A B selecting alternate mincu A 3




Holographic graph models

* Graphs can get complicated...

e.g. graph model for Oy

has 43 vertices & 88 edges



SImple tree graphs
* But tree graphs have much simpler structure

| o each edge specified by a unique
collection of boundary vertices

o PMI follows directly from specification
of mincut structure

° Def: graph is simple It every edge defines some subsystem cut;
or equivalently, It each boundary vertex has different color

° Thm:For simple tree graphs, V-space = PMI



Main Conjecture

° Conjecture |: We can convert any holographic graph model
iNto a tree while preserving the V-space.

a+b

a-+tc b+c

similarly, can collapse any isolated k-cycle

» Holds true for all ERs for N=5 HEC and all (hitherto-known) N=6 HEC ER:s.

generically gives a non-simple tree, but can be trivially made simple by fine-graining':



Graph representation of HECs ERs

[Herndndez-Cuenca, '19] ; ° o o o o
A o O o A . D A D A D

c c c /\\C c

A ) A ) . L4 . . L5 . . Le .
° : 0 E o E c 5 B o A

' ' 19. £19 = 360.
17. 417 = 360. 18. £15 = 360.

» All deformable to tree graphs by splitting boundary vertices



Coarse-graining & fine-graining

° Change N = N
o Changes dimensionality D — D' of entropy space
o Aspects of entanglement structure preserved (inherited)

o (Coarse-graining = declare multiple colors indistinguishable

o projection of entropy vectors
o corresponding projection of linear subspaces (V-space & PMI)

° Fine-graining = reverse of coarse-graining
o Hence can obtain simple graph from non-simple one by fine-graining
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Main theorem

o Consider ERs of N-party holographic entropy cone (HECK\)

o The HECN Is a convex hull of these; so ERs (in principle) determine all
holographic entropy inequalities

° Thm: Assuming Conjecture |, every ER of HECN Is obtained as a
projection of ER of a subadditivity cone SACK: (for some N' > N)

° |dea of Pf:

o Start w/ HECN ER & obtain graph representation G (has |-d V-space)
o Use Conjecture | & fine-grain to transform into a simple tree G'

o Resulting V-space = PMI in D'-dimensional entropy space

o Reduce to |-d PMI (if uplifting increased V-space dimensionality)

o = ER for SACN!



Implications

» HECN (delimiting seometric states in holography) is fully
determined solely from SACn (which bounds all guantum
states, regardless of holography)!

o All faces and internal flats of HECN are projections of faces of SACN!

o S0 the complicated multipartite entanglement structure is rooted Iin
fine-grained PMI

o Nonetheless, non-SA facets of HEC are superbalanced [He,vH, Rangamani,
SO can't be correlation measures [wi.p.w/ Herndndez-Cuenca & Jia]

* This in principle allows us to construct the full HECy for any N

 |n practice complicated: requires correct set of ERs of SACN' for all N/,
brojecting, taking convex hull, extracting ERs, and constructing facets...

o But conceptually demystifies the HEC (and entanglement structure of
nolographic states)




Future directions

* But not all ERs of SAC are physical (cf. QMIP).

e e.g.can violate SSA, so not even realizable in QM
o Q: what characterizes the set of SAC ERs!

° Conjecture 2: All SAC ERs compatible w/ QM are holographic

e hence realizable graphs

* Speculation: All SAC ERs consistent w/ SSA are quantum
mechanical

* Corrolary: All SAC ERs consistent w/ SSA are holographic



