HOLOGRAPHIC ENTROPY CONE FROM MARGINAL INDEPENDENCE

Veronika Hubeny

Physics Department & center for Quantum Mathematics and Physics

Gauge/Gravity Duality 2021

July 28, 2021, CERN

[based on 1808.07871, 1812.08133 w/ M. Rangamani & M. Rota + 1912.01041 w/ S. Hernández-Cuenca, M. Rangamani & M. Rota + 3 w.i.p.'s w/ T. He, **S. Hernández-Cuenca**, F. Jia, & **M. Rota**]

Motivation

- Holography
 - Central question: how does gravity emerge from non-gravitational dual?
 - Hints that entanglement structure plays a crucial role...
 - → characterize aspects of entanglement structure
 which correspond to geometric states
 \[
 \]

states in a holographic CFT which describe a classical bulk geometry

conveniently diagnosed by entanglement entropy

- Quantum Information
 - Understand information quantities derived from entanglement entropy

OUTLINE

- Motivation & Background
 - Entanglement entropy, holographic entropy cone & arrangement
- 2 important constructs
 - V-space ("proto-entropy subspace" / "min-cut subspace")
 - Pattern of marginal independence (PMI)
- 2 useful tools
 - Holographic graph models
 - Fine- / coarse- graining
- Main result
 - Thm & proof
 - Implications & open questions

Entanglement entropy

For CFT state $|\psi\rangle$ and bi-partition $\mathcal{H}=\mathcal{H}_A\otimes\mathcal{H}_{\bar{A}}$

 \rightarrow reduced density matrix $\rho_A \equiv \text{Tr}_{\bar{A}} |\psi\rangle\langle\psi|$

$$EE = S(A) \equiv -\text{Tr}\,\rho_A\,\log\rho_A$$

Decompose CFT into N elementary subsystems ("colors")

• \rightarrow entropy vector in D = 2^N - I dimensional entropy space e.g. for N=3, $\vec{S} = \{S(A), S(B), S(C), S(AB), S(AC), S(BC), S(ABC)\}$

conceptually useful to consider large N...

Entropy relations

- Physically realizable entropy vectors are restricted
- Universal restrictions:
 - Sub-additivity (SA) $S(A) + S(B) \geq S(AB)$ $\Rightarrow \text{Mutual information positivity} \qquad I(A:B) \equiv S(A) + S(B) S(AB) \geq 0$
 - Strong sub-additivity (SSA) $S(AB) + S(BC) \geq S(B) + S(ABC)$
 - \Rightarrow Mutual information monotonicity $I(A:C|B) \equiv I(A:BC) I(A:B) \geq 0$
 - ... (expect more relations with increasing N)
- Further restrictions, depending on the system
- Our task: understand the full set in holography

Entropy cone

{All physically allowed entropy vectors} = convex cone in entropy space

2 useful characterizations:

convex hull of extreme rays

intersection of half-spaces (=polyhedron) delineated by entropy inequalities

when restricted to geometric states in holography \rightarrow holographic entropy cone (HEC) [Bao, Nezami, Ooguri, Stoica, Sully, Walter '15]

- {geometric states in holographic CFT} c {all quantum states}
- but for N=2, quantum entropy cone = holographic entropy cone:

$$S(A) + S(B) \ge S(AB)$$

$$S(A) + S(AB) \ge S(B)$$

$$S(B) + S(AB) \ge S(A)$$

For N>2, holographic entropy cone c quantum entropy cone,
 (⇒ specified by additional entropy inequalities)

Quantum entropy cone specified by {SA,

6 independent (non-redundant) inequalities {uplifts, permutations, purifications}

cartoon of 3-d cross-section of R⁷ (not including the origin)

Quantum entropy cone specified by {SA, SSA}

6 independent (non-redundant) inequalities {uplifts, permutations, purifications}

Quantum entropy cone specified by {SA, SSA}

6 independent (non-redundant) inequalities {uplifts, permutations, purifications}

Holographic entropy cone specified by {SA, MMI}

Entropy relations for N=3

Recall:

Universal:

- Sub-additivity (SA) $S(A) + S(B) \ge S(AB)$
- $I(A:B) \equiv S(A) + S(B) S(AB) \ge 0$
- Strong sub-additivity (SSA) $S(AB) + S(BC) \ge S(B) + S(ABC)$
 - \Rightarrow Mutual information monotonicity $I(A:C|B) \equiv I(A:BC) I(A:B) \geq 0$

• True in holography:

Monogamy of mutual information (MMI)

$$S(AB) + S(BC) + S(CA) \ge S(A) + S(B) + S(C) + S(ABC)$$

 \Rightarrow Tripartite information $I_3(A:B:C) \equiv I(A:B) + I(A:C) - I(A:BC) \leq 0$

NB. geometric proof similar to that of SSA [Hayden, Headrick, Maloney] but distinguished via bit thread reformulation [Freedman, Headrick]

MMI more deeply rooted in bulk locality than SSA [VH]

- Quantum entropy cone not known $\forall N \geq 4$.
 - → Important open problem in Quantum Information Science
- N=4 holographic entropy cone however still consists of only {SA, MMI} (now gives 20 independent inequalities)
- N=5 holographic entropy cone (HEC) has 5 further inequalities
 specified in [Bao, Nezami, Ooguri, Stoica, Sully, Walter, '15]
 & proved to be the complete set in [Hernández-Cuenca, '19]
 - → N=5 HEC has 8 orbits of facets (total 372) and 19 orbits of extreme rays (total 2267)
- N=6 HEC (yet TBD) has many further inequalities!
 - \rightarrow N=6 HEC has \geq 140 orbits of facets and \geq 3910 orbits of extreme rays

[Avis & Hernández-Cuenca '21], [w.i.p., Hernández-Cuenca]

?: How do we find HEC systematically & understand its meaning / implications?

Original Strategy

- Enlarge the structure of interest:
 - Linear combinations of composite subsystem EEs such as I(A:B) or $I_3(A:B:C)$ are called *information quantities*
 - General form, e.g. for N=3: $Q(\vec{S}) = q_A S(A) + q_B S(B) + q_C S(C) + q_{AB} S(AB) + q_{AC} S(AC) + q_{BC} S(BC) + q_{ABC} S(ABC)$
 - $Q(\vec{S}) \geq 0$ gives entropy inequality, but it is useful to consider all interesting information quantities $Q(\vec{S})$, i.e. ones which:
 - can vanish for some configurations in geometric states
 - are independent of other such IQs (we'll call these primitive)
- Each $Q(\vec{S}) = 0$ specifies a hyperplane in entropy space
 - \rightarrow full set of primitive IQs = hyperplane arrangement

Utilize holography...

Holographic Entanglement Entropy

Proposal [RT=Ryu & Takayanagi, '06] for static configurations, covariantized by [HRT=VH, Rangamani, Takayanagi, '07] for time-dependent situations:

Entanglement entropy S(A) for a boundary region A is captured by the area of a bulk extremal surface $\mathfrak s$ homologous to A; for multiple candidates, choose least area one.

$$S(A) = \min_{\mathfrak{s} \sim A} \frac{\operatorname{Area}(\mathfrak{s})}{4 \, G_N}$$

Allows for phase transitions, e.g. jump in surface for S(AB):

Proto-entropy

- Entanglement entropy S(A) is infinite whenever $\partial A \neq \emptyset$
 - \Rightarrow can't localize in entropy space (unless we take a cutoff $\vec{S}_{\varepsilon(x)}$ but depends on $\varepsilon(x)$)
- However, certain information quantities are UV-finite & ε -indep.
 - Ex.: saturation of SA: I(A:B) = S(A) + S(B) S(AB) = 0

same parts of surfaces appear on both sides of the equality ⇒ cancel out independently of the cutoff

- \Rightarrow under varying cutoff, vectors $\vec{S}_{\varepsilon(x)}$ span lower-dimensional subspace of entropy space.
- Suggests hyperplanes are the natural / fundamental constructs
 - Think of QI relations as formal combinations of bulk extremal surfaces
 (~ proto-entropy), rather than their areas...

OUTLINE

- Motivation & Background
 - Entanglement entropy, holographic entropy cone & arrangement
- 2 important constructs
 - V-space
 - Pattern of marginal independence (PMI)
- 2 useful tools
 - Holographic graph models
 - Fine- / coarse- graining
- Main result
 - Thm & proof
 - Implications & open questions

V-space

- **Def**: V-space = intersection of all $\{Q=0\}$ hyperplanes
 - linear subspace of entropy space, of dimensionality $1 \le d \le D$
- Meaning & Utility
 - every configuration has a unique V-space associated to it
 - captures the essential features of multipartite entanglement structure implemented by the given configuration (insensitive to irrelevant details)
 - most refined (meaningfully localized in entropy space) such subspace
 - discrete structure
- Unifying construct:
 - extreme rays \Rightarrow 1-dim. V-space
 - facets \Rightarrow (D-1)-dim. V-space

PMI

- **Def**: Pattern of Marginal Independence (PMI) is a specification of full set of subsystems $\{X,Y\}$ for which I(X:Y)=0.
 - marginals = reduced density matrices
 - independent if factorized structure
- Meaning & Utility
 - ullet every entropy vector $ec{S}$ has a unique PMI
 - conceptually simpler (more primal) construct
 - likewise a linear subspace of entropy space, discrete structure
 - = intersection of all saturated SA or AL hyperplanes
 - ⇒ contains the V-space

Key Q: what is the exact relation between V-space and PMI?

Marginal Independence Problem

- However, not all PMIs are possible, due to
 - mathematical inconsistency

```
e.g. violates the identity I_2(A:BC) + I_2(B:C) = I_2(B:AC) + I_2(A:C)
```

physical inconsistency

```
violates entropy inequality, e.g. SSA \Rightarrow I_2(A:BC) = 0 \Rightarrow I_2(A:B) = 0
```

- Marginal Independence Problem (MIP): what PMIs are realizable?
 - QMIP: what PMIs are realizable in QM?
 considered in [Hernández-Cuenca,VH, Rangamani, Rota]
 - HMIP: what PMIs are realizable by geometric states in holography?
 w.i.p. [He, Hernández-Cuenca, VH, Rota]
 - useful mathematical tools: hyperplane arrangement lattices & matroids

OUTLINE

- Motivation & Background
 - Entanglement entropy, holographic entropy cone & arrangement
- 2 important constructs
 - V-space
 - Pattern of marginal independence (PMI)
- 2 useful tools
 - Holographic graph models
 - Fine- / coarse- graining
- Main result
 - Thm & proof
 - Implications & open questions

Holographic graph models

- Convenient representation of proto-entropies: abstracts away the discrete elements from a holographic configuration
 - vertices = cells in RT surface network
 - edges = pieces of RT surfaces separating neighboring regions, with
 weight = corresponding area
 cf. [Bao, Nezami, Ooguri, Stoica, Sully, Walter]

mincut structure specified by cut edges
first phase incorporated by
selecting alternate mincut

Holographic graph models

• Graphs can get complicated...

e.g. graph model for

has 43 vertices & 88 edges

Simple tree graphs

But tree graphs have much simpler structure

- each edge specified by a unique collection of boundary vertices
- PMI follows directly from specification of mincut structure

- **Def**: graph is *simple* if every edge defines some subsystem cut; or equivalently, if each boundary vertex has different color
- Thm: For simple tree graphs, V-space = PMI

Main Conjecture

• Conjecture I: We can convert any holographic graph model into a tree while preserving the V-space.

- similarly, can collapse any isolated k-cycle
- Holds true for all ERs for N=5 HEC and all (hitherto-known) N=6 HEC ERs.
- generically gives a non-simple tree, but can be trivially made simple by `fine-graining':

Graph representation of HEC5 ERs

All deformable to tree graphs by splitting boundary vertices

Coarse-graining & fine-graining

- Change $N \rightarrow N'$
 - Changes dimensionality D → D' of entropy space
 - Aspects of entanglement structure preserved (inherited)

- Coarse-graining = declare multiple colors indistinguishable
 - projection of entropy vectors
 - corresponding projection of linear subspaces (V-space & PMI)

- Fine-graining = reverse of coarse-graining
 - Hence can obtain simple graph from non-simple one by fine-graining

OUTLINE

- Motivation & Background
 - Entanglement entropy, holographic entropy cone & arrangement
- 2 important constructs
 - V-space
 - Pattern of marginal independence (PMI)
- 2 useful tools
 - Holographic graph models
 - Fine- / coarse- graining
- Main result
 - Thm & proof
 - Implications & open questions

Main theorem

- Consider ERs of N-party holographic entropy cone (HEC_N)
 - The HEC_N is a convex hull of these; so ERs (in principle) determine all holographic entropy inequalities
- Thm: Assuming Conjecture I, every ER of HEC_N is obtained as a projection of ER of a subadditivity cone $SAC_{N'}$ (for some N' \geq N)
- Idea of Pf:
 - Start w/ HECN ER & obtain graph representation G (has I-d V-space)
 - Use Conjecture I & fine-grain to transform into a simple tree G'
 - Resulting V-space = PMI in D'-dimensional entropy space
 - Reduce to I-d PMI (if uplifting increased V-space dimensionality)
 - = ER for $SAC_{N'}$

Implications

- HEC_N (delimiting geometric states in holography) is fully determined solely from $SAC_{N'}$ (which bounds all quantum states, regardless of holography)!
 - All faces and internal flats of HECN are projections of faces of SACN
 - So the complicated multipartite entanglement structure is rooted in fine-grained PMI
 - Nonetheless, non-SA facets of HEC are superbalanced [He,VH, Rangamani], so can't be correlation measures [w.i.p. w/ Hernández-Cuenca & Jia]
- ullet This in principle allows us to construct the full HEC_N for any N
 - In practice complicated: requires correct set of ERs of $SAC_{N'}$ for all N', projecting, taking convex hull, extracting ERs, and constructing facets...
 - But conceptually demystifies the HEC (and entanglement structure of holographic states)

Future directions

- But not all ERs of SAC are physical (cf. QMIP).
 - e.g. can violate SSA, so not even realizable in QM
 - Q: what characterizes the set of SAC ERs?
- Conjecture 2: All SAC ERs compatible w/ QM are holographic
 - hence realizable graphs
- Speculation: All SAC ERs consistent w/ SSA are quantum mechanical
- Corrolary: All SAC ERs consistent w/ SSA are holographic