

Hyperon polarization and decay properties from J/ψ and ψ' at BESIII

Institute of High Energy Physics, CAS pingrg@ihep.ac.cn

Ping Ronggang

On behalf of BESIII Collaboration

QWG2021, virtual meeting, March 15-19, 2021

BESIII $J/\psi, \psi'$ data sets

J/ψ : Total 10.047 billion J/ψ decays ψ' : 448 million decays

Hyperon pair production at BESIII

• $e^+e^- \rightarrow \gamma^* \rightarrow \Lambda \overline{\Lambda}, \Sigma \overline{\Sigma}, \Xi \overline{\Xi}, \Omega \overline{\Omega}, \Lambda_c^+ \overline{\Lambda}_c^-, @ \sqrt{s} = 2.0 \sim 4.6 \text{ GeV}, \text{ or update for } \Lambda_c^+ \overline{\Sigma}_c^-, \Sigma_c \overline{\Sigma}_c$

Parity violation in $\Sigma^+ \rightarrow p\pi^0$ and test CP

$$\frac{dN}{d\Omega} = \frac{1}{4\pi} \left(1 + \alpha_{\Sigma} \vec{P} \cdot \hat{q} \right) = \frac{1}{4\pi} \left(1 + \alpha_{\Sigma} P_{\Sigma} cos \theta_{p} \right)$$

 α_{Σ} : Σ decay parameter, P_{Σ} : Σ polariation

$$\alpha_{\Sigma} = \frac{|B_{+}|^{2} - |B_{-}|^{2}}{|B_{+}|^{2} + |B_{-}|^{2}}, \alpha_{\overline{\Sigma}} = \frac{|\overline{B}_{+}|^{2} - |\overline{B}_{-}|^{2}}{|\overline{B}_{+}|^{2} + |\overline{B}_{-}|^{2}}$$

Helicity amplitude under CP invariance: $\bar{B}_{-\lambda_p} = \eta_{\Sigma} \eta_p \eta_{\pi} (-1)^{s_{\Sigma} - s_p - s_{\pi}} B_{\lambda_p} = -B_{\lambda_p}$ So: $\alpha_{\Sigma} = -\alpha_{\overline{\Sigma}}$

CP-odd observable:

$$A_{\Sigma} = \frac{\alpha_{\Sigma} + \alpha_{\overline{\Sigma}}}{\alpha_{\Sigma} - \alpha_{\overline{\Sigma}}}$$

SM prediction: $A_{\Sigma} \sim 3.6 \times 10^{-6}$ PRD67, 056001 (2003)

Σ^+ and $\overline{\Sigma}^-$ polarization in J/ψ and ψ' decays

- Unpolarized e^- , e^+ beams
- No longitudinal Σ polarization
- Transverse Σ polarization

$\mathcal{W}(\boldsymbol{\xi}) = \mathcal{F}_{0}(\boldsymbol{\xi}) + \alpha \mathcal{F}_{5}(\boldsymbol{\xi})$	unpolarized cross section
$+\alpha_1\alpha_2\left(\mathcal{F}_1(\boldsymbol{\xi})+\sqrt{1-\alpha^2}\cos(\Delta\Phi)\mathcal{F}_2(\boldsymbol{\xi})+\alpha\mathcal{F}_6(\boldsymbol{\xi})\right)$	spin correlation
$+\sqrt{1-\alpha^2}\sin(\Delta\Phi)\left(\alpha_1\mathcal{F}_3(\boldsymbol{\xi})+\alpha_2\mathcal{F}_4(\boldsymbol{\xi})\right),$	transverse polarization
$\mathcal{T}_{\mathbf{a}}(\mathbf{k}) = 1$	

 $\mathcal{F}_0(\boldsymbol{\xi}) = 1$

 $\mathcal{F}_1(\boldsymbol{\xi}) = \sin^2\theta \sin\theta_1 \sin\theta_2 \cos\phi_1 \cos\phi_2 + \cos^2\theta \cos\theta_1 \cos\theta_2$

- $\mathcal{F}_2(\boldsymbol{\xi}) = \sin\theta\cos\theta \left(\sin\theta_1\cos\theta_2\cos\phi_1 + \cos\theta_1\sin\theta_2\cos\phi_2\right)$
- $\mathcal{F}_3(\boldsymbol{\xi}) = \sin\theta\cos\theta\sin\theta_1\sin\phi_1$

 $\mathcal{F}_4(\boldsymbol{\xi}) = \sin\theta\cos\theta\sin\theta_2\sin\phi_2$

Φ: phase angle difference α_1, α_2 : decay parameters for $\Sigma, \overline{\Sigma}$, respectively.

 $\mathcal{F}_5(\boldsymbol{\xi}) = \cos^2\theta \qquad \qquad \mathcal{F}_6(\boldsymbol{\xi}) = \cos\theta_1 \cos\theta_2 - \sin^2\theta \sin\theta_1 \sin\theta_2 \sin\phi_1 \sin\phi_2.$

Σ^+ and $\overline{\Sigma}^-$ polarization in J/ψ and ψ' decays (cont.)

• $J/\psi \to \Sigma^+ \overline{\Sigma}^-$, $\Sigma^+ \to p \pi^0$, $\overline{\Sigma} \to \overline{p} \pi^0$

• Σ reconstruction: minimize $\sqrt{\left(M_{p\pi^0} - m_{\Sigma^+}\right)^2 + \left(M_{\bar{p}\pi^0} - m_{\bar{\Sigma}^-}\right)^2}$

Σ^+ and $\overline{\Sigma}^-$ polarization in J/ψ and ψ' decays (cont.)

Background events estimated with inclusive MC decays and sideband

- $N_{bg} = 0.5N_A 0.25N_B$ background level: 5%(1%) for J/ψ (ψ')
- Number of candidates J/ψ : 87,815 ; ψ ': 5,327
- Simultaneous fit to J/ψ and ψ' events $S = -\ln \mathcal{L}_{data} + \ln \mathcal{L}_{bg}$

Parameter	Measured value	
$\alpha_{J/\psi}$	$-0.508 \pm 0.006 \pm 0.004$	
$\Delta \Phi_{J/\psi}$	$-0.270\pm0.012\pm0.009$	
$\alpha_{\psi'}$	$0.682 \pm 0.03 \pm 0.011$	
$\Delta \Phi_{\psi'}$	$0.379 \pm 0.07 \pm 0.014$	
α_0	$-0.998 \pm 0.037 \pm 0.009$	
\bar{lpha}_0	$0.990 \pm 0.037 \pm 0.011$	

$$A_{CP,\Sigma} = \frac{\alpha_0 + \alpha_0}{\alpha_0 - \overline{\alpha_0}} = -0.004 \pm 0.037 \pm 0.002$$
$$\frac{1}{2} (\alpha_0 - \overline{\alpha_0}) = -0.994 \pm 0.004 \pm 0.002_{8}$$

Spin assignment in quark model

 Ω^{-} as sss bound state in SU(3) decuplet, I = 3/2

Experimental determination of spin

Xed $\operatorname{Lar_{BCC}}^{K^{-}}$ $K^{-}p \rightarrow \Omega^{-} + \operatorname{anything},$ $\downarrow \Lambda^{0}K^{-}$ $\downarrow \Lambda^{0}K^{-}$ Rule out $J = \frac{1}{2},$ consistent with $J = \frac{3}{2}$

 $\cos\theta_h(\Lambda)$

BABAR experiment (2006) \geq Assume J = 1/2 for Ω_c^0 and Ξ_c^0 Entries/0.2 800 600 400 200 $\Omega^- \to \Lambda K$ -0.8 -0.6 -0.4 -0.2 -0 0.20.40.6 0.8

i. $\Xi_c^0 \to \Omega^- K^+$, ii. $\Omega_c^0 \to \Omega^- \pi^+$ with $\Omega^- \rightarrow \Lambda K^-$, $\Lambda \rightarrow p\pi^-$

BESIII: $e^+e^- \rightarrow \psi(2S) \rightarrow \Omega^-\overline{\Omega}^+$

- Polarization well known, very clean data events
- Ω^- or $\overline{\Omega}^+$ single tag analysis

 $\Omega^- \to \Lambda K^-, \Lambda \to p\pi^-; \quad \overline{\Omega}^+ \to \overline{\Lambda} K^+, \overline{\Lambda} \to \overline{p}\pi^+$

- > 3 charged tracks selected from MDC, and p, K^- or \overline{p}, K^+ PID required
- \blacktriangleright Λ or $\overline{\Lambda}$ reconstructed with second vertex fit
- > undetected Ω^- or $\overline{\Omega}^+$ inferred from the recoil mass of the tagged side

• Spin observable: real multipole parameters r_M^L

$$\rho_J(\Omega^-) = \frac{r_0^0}{2J+1} \left(I + 2J \sum_{L=1}^{2J} \sum_{M=-L}^{L} r_M^L Q_M^L \right)$$

 Q_M^L : Hermitian basis matrix, constructed with spherical tensor operators T_M^L

• Test two spin hypotheses:

Joint angular distribution:

$$J = \frac{3}{2}: \mathcal{W}(\theta_{\Omega}, \theta_{\Lambda}, \phi_{\Lambda}, \theta_{p}, \phi_{p}) = \sum_{\mu=0}^{15} \sum_{\nu=0}^{3} r_{\mu}(\theta_{\Omega}) b_{\mu\nu}(\theta_{\Lambda}, \phi_{\Lambda}) a_{\nu0}(\theta_{p}, \phi_{p})$$

$$J = \frac{1}{2} : \mathcal{W}(\theta_{\Omega}, \theta_{\Lambda}, \phi_{\Lambda}, \theta_{p}, \phi_{p}) = \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} r_{\mu}(\theta_{\Omega}) b_{\mu\nu}(\theta_{\Lambda}, \phi_{\Lambda}) a_{\nu0}(\theta_{p}, \phi_{p})$$

Likelihood test

Data favor J = 3/2 hypothesis.

Fix: $\alpha_{\Lambda} = -\alpha_{\overline{\Lambda}} = 0.75$, $\alpha_{\Omega^-} = -\alpha_{\overline{\Omega}^+} = 0.0154$

Two solutions under J = 3/2 hypothesis

parameter	solution I	solution II
h_1	$0.30 \pm 0.11 \pm 0.04$	$0.31 \pm 0.10 \pm 0.04$
ϕ_1	$0.69 \pm 0.41 \pm 0.13$	$2.38 \pm 0.37 \pm 0.13$
h_3	$0.26 \pm 0.05 \pm 0.02$	$0.27 \pm 0.05 \pm 0.01$
ϕ_3	$2.60 \pm 0.16 \pm 0.08$	$2.57 \pm 0.16 \pm 0.04$
h_4	$0.51 {\pm} 0.03 {\pm} 0.01$	$0.51 \pm 0.03 \pm 0.01$
ϕ_4	$0.34 \pm 0.80 \pm 0.31$	$1.37 \pm 0.68 \pm 0.16$
ϕ_{Ω}	$4.29 \pm 0.45 \pm 0.23$	$4.15 \pm 0.44 \pm 0.16$

BESIII, Phys.Rev.Lett. <u>126.092002</u>

TOY MC test

BESIII, Phys.Rev.Lett. 126.092002

- ✓ MC events generated with fitted parameters
 - same selection criteria applied
- ✓ ensembles of MC events with same data size

t distribution:

$$t = 2(\mathcal{L}^{J=1/2} - \mathcal{L}^{J=3/2})$$

✓ Significance
$$J = \frac{3}{2}$$
 over $J = \frac{1}{2}$ with $> 14\sigma$

 r_i basis $r_1: Q_{-1}^1, r_6: Q_0^2,$ $r_7: Q_1^2, r_8: Q_2^2, r_{10}: Q_{-2}^3, r_{11}: Q_{-1}^2$

✓ alignment symmetry under polar angle θ_{Ω}

- ✓ alignment dominated by Q_0^2
- ✓ $\Omega^- \to \Lambda K^-$ favors *D* wave

$$\frac{|A_D|^2}{|A_P|^2} = \begin{cases} 2.4 \pm 2.0 \text{ (solution I)} \\ 3.3 \pm 2.9 \text{ (solution II)} \end{cases}$$

Where does the TP come from?

- From the e⁺/e⁻ beam ?
 X No, BEPC beams unpolarized
- From the e^+/e^- natural polarization when circulating in the BEPCII storage ring ?

X Sokolov-Ternov effects: 4.3 hs $@\psi'$ peak, but beam lifetime ~ 2.0 hs

• From the J/ψ spin transfer ?

✓ Yes, it does from the J/ψ tensor polarization

$$J/\psi$$
 polarization: $\mathcal{P}_z = 0$, $T_{zz} = \frac{1}{\sqrt{6}}$

 $\boldsymbol{\Sigma}$ transverse polarization:

$$\mathcal{P}_{y} = \sqrt{6} \frac{T_{zz} \sin \theta \cos \theta \sin \Delta \sqrt{1 - \alpha_{\psi}^{2}}}{1 + \alpha_{\psi} \left[\frac{1}{3} + \frac{1}{\sqrt{6}} T_{zz} (1 + 3\cos 2\theta)\right]}$$

 \mathcal{P}_y manifest if $\sin \Delta \neq 0$

Summary

- Significant observation of $\Sigma^+/\overline{\Sigma}^-$ transverse polarization in J/ψ and ψ' decays.
- Ω^- spin determined to be 3/2 and its polarization alignment measured.
- BESIII 10 billion J/ψ data provides us chances to access hyperon physics.
- Extension study to charmed hyperon are ongoing.
- Polarized beam in the future super-tau charm facility (STCF) help to improve the precision.

Thanks for your attention!

Beijing Electron Positron Collider (BEPC)

beam energy: 1.0 – 2.3 GeV

2004: started BEPCII upgrade, BESIII construction 2008: test run 2009 - now: BESIII physics run

LINAC

• 1989-2004 (BEPC):

L_{peak}=1.0x10³¹ /cm²s

• 2009-now (BEPCII):

L_{peak}=1.0x10³³/cm²s

On 29. Feb., 2021, Beam Energy upgrade, run at \sqrt{s} =4.916 GeV ¹⁶