



# Measurements of $\eta_c$ and $h_c$ decays into light hadrons at BESIII

On behalf of the BESIII Collaboration

#### Meike Küßner

mkuessner@ep1.rub.de

**Ruhr-University Bochum** 

Mar 15 2021



### **BESIII at BEPCII**

- Symmetric e<sup>+</sup>e<sup>-</sup> collider in Beijing
- Update of BEPC accelerator
  - 2004: construction started
  - 2008: first collisions
  - 2009-today: BESIII physics runs
- Energy range:  $\sqrt{s} = 2 4.9 \text{ GeV}$
- Crossing angle: 11 mrad
- Design luminosity: 1.10<sup>33</sup> cm<sup>-2</sup> s<sup>-1</sup>
- Achieved luminosity: 1.01.10<sup>33</sup> cm<sup>-2</sup> s<sup>-1</sup>





2

QWG 2021

#### Data Samples collected at BESIII



#### What we can learn from Charmonium Decays

- Charmonium region opens a window to study the transition region between low and high energy and therefore the transition region between nonperturbative and perturbative QCD
- Masses are well measured and agree well with theory
- Decays are more difficult, since below DD
   threshold strong/OZI charmonium decays dominate
- Due to the high mass of the c quark non relativistic models are quite successful
- Necessary adjustments: NR models + relativistic corrections + pQCD
- Lattice predictions are quite successful at predicting masses
- Studying hadronic transitions of the spin-singlet Pwave state h<sub>c</sub> offers a opportunity to study spin-spin interactions
- We experimentalists try our best to provide precise data to help theory





Meike Küßner

QWG 2021

### **Experimental Challenges**



- In  $e^+e^-$  annihilation only particles carrying quantum numbers of the photon (1<sup>--</sup>) can be produced directly
- Knowledge of decay behaviour still sparse for non vector states
- $\chi_{cJ}$ ,  $\eta_c$  and  $h_c$  states can only be accessed via (rare) transitions  $\Rightarrow$  limits statistics right from the beginning
- Often large background contamination, e.g.  $h_c \rightarrow \gamma \eta_c$ , can cause peaking background

### **Experimental Challenges**

- E.g. BESIII sensitivity to new  $h_c$  decay modes:
  - ~ 448.1 M  $\psi(3686)$  events on tape, BF( $\psi(3686) \rightarrow \pi^0 h_c$ ) = 8.6  $\cdot 10^{-4}$ , efficiency ~ some % (other subsequent BF...)  $\Rightarrow \sim 10^{-3}$
- BESIII is currently taking more data at  $\psi(3686) \sim 2.5$  Billion  $\Rightarrow \sim 10^{-4}$
- Another challenge often arises from low energetic photons
- Hadronic transitions offer access to the soft-gluon regime (non perturbative)
- Predictions vary, e.g.  $h_c \to \pi \pi J/\psi$  : 0.05% 2% prd 37, 1210, prd 52, 1710
- Best measurement: BF(h<sub>c</sub>  $\rightarrow \pi \pi J/\psi$ ) < 3.6  $\cdot 10^{-3}$  very low and at the limit of statistics
- $h_c \rightarrow \gamma \eta_c$  is the prominent decay channel in every calculation, but predictions of the decay to light hadrons range from 14% 48%, depending on the theoretical model PLB 65, 157 (1976), PRD 46, R1914 (1992), Phys. Rep. 41, 1 (1978), PRD 37, 1210 (1988)
- Only a few measurements of new  $h_c$  and  $\eta_c$  decays exist
- Experimental measurements of new decay modes are therefore needed to test and improve those models





#### First observations of $h_c \rightarrow hadrons$

- Knowledge on decay behaviour of h<sub>c</sub> still sparse since discovery in 2005 PRL 95, 102003
- Only few decay modes have been observed (  $BF(h_c \rightarrow \gamma \eta_c) = 51 \%$ others 3 %)

| Mode |                                         |                              |              |                                             |  |  |
|------|-----------------------------------------|------------------------------|--------------|---------------------------------------------|--|--|
|      |                                         | $\mathcal{B}_{h_c}(10^{-3})$ | S.S.         | $\mathcal{B}_{h_c}^{\mathrm{PDG}}(10^{-3})$ |  |  |
| Ι    | $h_c \rightarrow p \bar{p} \pi^+ \pi^-$ | $2.89 \pm 0.32 \pm 0.55$     | $7.4\sigma$  |                                             |  |  |
| II   | $h_c \rightarrow \pi^+ \pi^- \pi^0$     | $1.60 \pm 0.40 \pm 0.32$     | $4.6\sigma$  | <2.2                                        |  |  |
| III  | $h_c \rightarrow 2(\pi^+\pi^-)\pi^0$    | $7.44 \pm 0.94 \pm 1.52$     | 9.1 <i>σ</i> | $22^{+8}_{-7}$                              |  |  |
| IV   | $h_c \rightarrow 3(\pi^+\pi^-)\pi^0$    | $4.65 \pm 2.17 \pm 1.08$     | $2.1\sigma$  | <29                                         |  |  |
|      |                                         | <8.7                         |              |                                             |  |  |
| V    | $h_c \rightarrow K^+ K^- \pi^+ \pi^-$   | < 0.6                        |              |                                             |  |  |

 Still no conclusion whether hadronic decays, radiative decays or transition play the dominant role of remaining decay modes





Meike Küßner

8

QWG 2021

# Search for new hadronic decays of $h_c$ and observation of $h_c \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$

Phys. Rev. D 102, 112007 (2020)



#### Search for new hadronic decays of h<sub>c</sub> and observation of $h_c \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$

- Systematic study of ten hadronic final states of  $h_c$  via  $\psi(3686) \rightarrow \pi^0 h_c$  for the first time
- In addition to multi-pion final states, multi particle final states, involving kaons were studied to find ,missing' decays

| ase or | absent signal                     | observed for the first tim |                |                                                                          |                                                    |
|--------|-----------------------------------|----------------------------|----------------|--------------------------------------------------------------------------|----------------------------------------------------|
| Mode   | X                                 | $N_{h_c}$                  | $\epsilon(\%)$ | $\mathcal{B}(\psi(3686) \rightarrow \pi^0 h_c) \times \mathcal{B}(h_c -$ | $\rightarrow X$ ) $\mathcal{B}(h_c \rightarrow X)$ |
| (i)    | $K^+K^-\pi^+\pi^-\pi^0$           | $80 \pm 15$                | 6.5            | $(2.8 \pm 0.5 \pm 0.3) \times 10^{-6}$                                   | $(3.3 \pm 0.6 \pm 0.6) \times 10^{-3}$             |
| (ii)   | $\pi^+\pi^-\pi^0\eta$             | $35\pm9$                   | 3.3            | $(6.2 \pm 1.6 \pm 0.7) \times 10^{-6}$                                   | $(7.2 \pm 1.8 \pm 1.3) \times 10^{-3}$             |
|        |                                   | <50.0                      |                | $< 1.5 \times 10^{-5}$                                                   | $< 1.8 \times 10^{-2}$                             |
| (iii)  | $K^0_S K^\pm \pi^\mp \pi^+ \pi^-$ | $41\pm13$                  | 5.5            | $(2.4\pm0.7\pm0.3)	imes10^{-6}$                                          | $(2.8\pm0.9\pm0.5)	imes10^{-3}$                    |
|        | 2                                 | <65.3                      |                | $< 3.9 \times 10^{-6}$                                                   | $<4.7 \times 10^{-3}$                              |
| (iv)   | $K^+K^-\pi^0$                     | <20.1                      | 9.8            | $< 4.8 \times 10^{-7}$                                                   | $< 5.8 \times 10^{-2}$                             |
| (v)    | $K^+K^-\eta$                      | <18.5                      | 14.3           | $< 7.5 \times 10^{-7}$                                                   | $< 9.1 \times 10^{-2}$                             |
| (vi)   | $K^+K^-\pi^+\pi^-\eta$            | <24.1                      | 6.9            | $< 2.0 \times 10^{-6}$                                                   | $<2.5 \times 10^{-3}$                              |
| (vii)  | $2(K^+K^-)\pi^0$                  | <11.7                      | 6.7            | $<2.1 \times 10^{-7}$                                                    | $<2.5 \times 10^{-2}$                              |
| (viii) | $K^+K^-\pi^0\eta$                 | <20.2                      | 6.3            | $< 1.8 \times 10^{-6}$                                                   | $<2.2 \times 10^{-3}$                              |
| (ix)   | $K^0_S K^\pm \pi^\mp$             | <17.4                      | 14.4           | $< 4.8 \times 10^{-7}$                                                   | $< 5.7 \times 10^{-2}$                             |
| (x)    | $p \bar{p} \pi^0 \pi^0$           | <11.8                      | 8.7            | $< 4.4 \times 10^{-7}$                                                   | $< 5.2 \times 10^{-2}$                             |

limite vyere determ 

• No explanation for missing h<sub>c</sub> decays was found even though most scenarios were covered!



10

### Search for new hadronic decays of $h_c$ and observation of $h_c \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$



## Search for new hadronic decays of $h_c$ and observation of $h_c \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$

- Search for subprocesses in the decay  $h_c \to K^+ K^- \pi^+ \pi^- \pi^0$
- Signal yield determined by fits in bins of the respective subsystem
- Enhancements in the invariant  $K\pi$  and  $KK\pi$  masses hints to likely subprocess involving excited kaons as  $h_c \rightarrow \left(K^*(892)/K^*_{0,2}(1430)\right) \left(K_2(1820)/K^*_2(1980)\right)$
- This would also explain the evidence for  $h_c \to K_S^0 K^{\pm} \pi^{\mp} \pi^+ \pi^-$







<u>Meike Küßner</u>

13

QWG 2021

# Measurements of the branching fractions of $\eta_c \rightarrow K^+ K^- \pi^0, K_S^0 K^{\pm} \pi^{\mp}, 2(\pi^+ \pi^- \pi^0), \text{ and } p\bar{p}$

- Studied via  $e^+e^- \rightarrow \pi^+\pi^-h_c$ ,  $h_c \rightarrow \gamma \eta_c$  at  $\sqrt{s} = 4.23, 4.26, 4.36, 4.42 \text{ GeV}$
- Less background expected than in  $J/\psi \rightarrow \gamma \eta_c$
- Results more precise than previous reports
- Additional inclusive measurement of charged track multiplicity in  $\eta_c$  decays



| Final states               | BF (%)                      |  |  |
|----------------------------|-----------------------------|--|--|
| $\overline{K^+K^-\pi^0}$   | $1.15 \pm 0.12 \pm 0.10$    |  |  |
| $K^0_S K^{\pm} \pi^{\mp}$  | $2.60 \pm 0.21 \pm 0.20$    |  |  |
| $2(\pi^{+}\pi^{-}\pi^{0})$ | $15.3\pm1.8\pm1.8$          |  |  |
| <u>p</u> p                 | $0.120 \pm 0.026 \pm 0.015$ |  |  |

| N <sub>charge</sub> | Normalized values           |
|---------------------|-----------------------------|
| 0                   | $0.036 \pm 0.011 \pm 0.007$ |
| 2                   | $0.328 \pm 0.035 \pm 0.043$ |
| 4                   | $0.467 \pm 0.044 \pm 0.064$ |
| 6                   | $0.132 \pm 0.033 \pm 0.022$ |
| $\geq 8$            | $0.037 \pm 0.015 \pm 0.009$ |

<u>Meike Küßner</u>

14

QWG 2021



Meike Küßner

**QWG 2021** 

# Search for the X(2370) and observation of $\eta_c \rightarrow \eta \eta \eta'$ in $J/\psi \rightarrow \gamma \eta \eta \eta'$

Phys. Rev. D 103, 012009 (2021)



16

# Search for the X(2370) and observation of $\eta_c \rightarrow \eta \eta \eta'$ in $J/\psi \rightarrow \gamma \eta \eta \eta'$

- Main goal of the analysis was to study gluon rich decays and search for signatures of the  $0^{-+}$  glueball candidate X(2370)
- Previous indications by BESIII:

 $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta', \gamma K K \eta'$  PRL 106.072002, EPJ C 80 746

- $\eta'$  reconstructed in  $\gamma \pi^+ \pi^-$  and  $\pi^+ \pi^- \eta$  decay modes
- No signal of X(2370) found but signal of  $\eta_c$  instead

 $BF(J/\psi \to \gamma \eta_c) \cdot BF(\eta_c \to \eta \eta \eta') = (4.86 \pm 0.62 \pm 0.45) \cdot 10^{-5}$ 

- Consistent with theoretical prediction  $< 1 \cdot 10^{-4}$ 



J/ $\psi \rightarrow \gamma \eta \eta \eta', \eta' \rightarrow \gamma \pi^+ \pi^-$ 

PRD 103, 012009 (2021)

EPJ A 54, 139 (2018)

Meike Küßner

17

QWG 2021

#### **Summary and Perspectives**

- Although the charmonium spectrum below the open charm threshold seems to be well established, knowledge of decay behaviour still sparse
- Theoretical models need experimental input to improve accuracy
- Experimentalists need guidance to search for specific reactions
- The largest data samples of  $\psi(3686)$  and  $J/\psi$  have been collected at BESIII
- BESIII currently accumulates more data at  $\psi(3686)$ 
  - ➡ 5 times more data soon!
- Many off-resonance samples available
- This offers unique possibilities to study rare processes and to improve statistical accuracy
- Energy range extended to almost  $\sqrt{s} = 5 \text{ GeV}$  recently!
- Thanks for Listening and stay healthy!

Further results from BESIII expected soon!

18