

The 14th International workshop on Heavy Quarkonium

$\psi^{(')}$ decays involving baryon final states

Liang Yan (On behalf of <mark>€€S</mark>Ⅲ Collaboration) Fudan University UC Davis, USA, 15th-19th March, 2021

Outline

- Introductions to $\psi^{(\prime)}$ and baryons
- Recent results at BESIII
 Decay into BB pairs
 Decay into B₈B₁₀
 Decay into Baryons plus mesons

• Summary

BESIII Experiment

 ψ (2S): World largest datasets collected in 2009 and 2012, 448.1M events, directly generated in e⁺ e⁻ collision.

 χ_{cJ} : produced via radiative decay from $\psi(2S)$, the BR is ~ 10%, very low background level.

Baryon: A laboratory for strong interaction and inner structures.

$\psi(2S)$ -> $\Xi(1530)^{-}$ $\Xi(1530)^{+}$ and $\Xi(1530)^{-}$ Ξ^{+}

Phys. Rev. D 100, 051101 (2019)

- Searching for the decays into octetdecuplet baryonic pairs.
- Measure the angular distribution parameter to test theorectical models.
- The observation of ψ(2S)->Ξ(1530)-Ξ+ indicate the SU(3) flavor symmetry is still broken in the ψ(2S) case, which further validates the generality of SU(3) flavor symmetry breaking.
- ✓ The measured angular distrbution parameter α agrees with theoretical predictions, which are 0.18 and 0.31.

	$\psi(3686) \rightarrow \Xi(1530)^- \Xi(1530)^+$		$\psi(3686) \to \Xi(1530)^- \Xi^+$		
Tag mode	Ξ(1530)-	$ar{\Xi}(1530)^+$	Ξ(1530)-	$ar{\Xi}(1530)^+$	
Nobs	2664 ± 114	2403 ± 132	152 ± 37	247 ± 48	
ϵ_1 (%)	7.85 ± 0.09	7.16 ± 0.08	8.89 ± 0.09	8.42 ± 0.09	
ϵ_2 (%)	8.91 ± 0.09	8.17 ± 0.09	10.58 ± 0.10	9.82 ± 0.10	
$S(\sigma)$	23.0	18.2	4.4	5.3	
α	$0.43 \pm 0.30 \pm 0.09$	$0.36 \pm 0.35 \pm 0.08$			
$\mathcal{B}(10^{-5})$	$11.51 \pm 0.49 \pm 0.92$	$11.36 \pm 0.62 \pm 1.14$	$0.57 \pm 0.14 \pm 0.05$	$0.93 \pm 0.18 \pm 0.10$	
$\alpha^{\rm com}$	$0.40 \pm 0.24 \pm 0.06$				
$\mathcal{B}^{com}(10^{-5})$	$11.45 \pm 0.40 \pm 0.59$		$0.70 \pm 0.11 \pm 0.04$		

J/ψ->Ξ(1530)⁻Ξ+

Phys. Rev. D 101, 012004 (2020)

- The SU(3) flavor symmetry breaking decay (B₈B₁₀)
 - The branching ratio is anomalously large comparing to SU(3)-allowed decays.
 - Angular distribution has the potential to bring more insight into the SU(3)flavor violation mechanism.

Br(J/ ψ ->Ξ(1530)⁻Ξ⁺ +c.c.) = (3.17 ± 0.02 ± 0.08) X 10⁻⁴ (an order of magnitude improved precision) α = -0.21 ± 0.04 ± 0.06 (measured for the first time)

 $J/\psi -> \Xi(1530)^{-}\Xi^{+}$

Phys. Rev. D 101, 012004 (2020)

- The electromagnetic transition $\Xi(1530)^- \rightarrow \gamma \Xi^-$ is studied
 - Decuplet to Octet hyperons, a sensitive probe of their structures.
 - Only upper limit for the branching ratio < 4% at 90% CL. in 1973 in experiment.

First evidence for $\Xi(1530)^- \rightarrow \gamma \Xi^-$ with significance of 3.9 σ ; Upper limit at 90% C.L. is measured to be 3.7%.

 $\chi_{cJ} \rightarrow \Sigma^{-} \Sigma^{+}$

Phys. Rev. D 101, 092002 (2020)

- χ_{cJ} studies are important for testing models based on non-pQCD.
- There are some inconsistences between experiment and theory calculation especially in baryon pairs productions.

Channel	This work	Statistical significance	BESIII [13]	Theoretical predictions	
	$\chi_{cJ} \rightarrow \Sigma^- \bar{\Sigma}^+$		$\chi_{cJ} \rightarrow \Sigma^+ \bar{\Sigma}^-$	COM	QCM [11]
$\chi_{c0} \rightarrow \Sigma^- \bar{\Sigma}^+$	$51.3 \pm 2.4 \pm 4.1$	30σ	$50.4 \pm 2.5 \pm 2.7$	5.9-6.9 [5]	18.1 ± 3.9
$\chi_{c1} \rightarrow \Sigma^- \bar{\Sigma}^+$	$5.7\pm1.4\pm0.6$	5.8σ	$3.7 \pm 0.6 \pm 0$.2	3.3 [4]	
$\chi_{c2} \to \Sigma^- \bar{\Sigma}^+$	$4.4\pm1.7\pm0.5$	3.6σ	$3.5 \pm 0.7 \pm 0$.3	5.0 4	4.3 ± 0.4

e+ e- -> Ξ⁻ Ξ⁺

Phys. Rev. Lett 124, 032002 (2020)

The cross section and EMFFs for $B\overline{B}$ pairs are studied above open charm threshold with single tag method.

No significant of $\psi(4230)$ or $\psi(4260) \rightarrow \Xi^{-}\Xi^{+}$ process is observed.

An excited Ξ baryon is observed with M = (1825.5 ± 4.7 ± 4.7) MeV/c² and Γ = (17.0 ± 15.0 ± 7.9) MeV, which is consistent with Ξ (1820)⁻ in 1 σ uncertainty.

ψ(2S)->p p η'

Phys. Rev. D 99, 032006 (2019)

- Study the contribution of intermediate states based on nucleon and N* pole diagrams.
- η - η ' mixing study

We use two decay modes to reconstruct η^\prime signals.

ψ(2S)->p p η'

Phys. Rev. D 99, 032006 (2019)

- No obvious intermediate structures
- Observe for the first time, and braching fraction is measured to be (1.10 ± 0.10 ± 0.08) X 10⁻⁵

• The ratio
$$\frac{\Gamma(\psi(3686) \to p\bar{p}\eta')}{\Gamma(\psi(3686) \to p\bar{p})} = (3.61 \pm 0.41)\%$$

 The η-η' mixing angle is measured to be -24 ± 11°, which is consistent with QCD-inspired calculation and quark-line rule.

Summary

- Based on collected ψ (2S) data, we observed new decay modes and tested QCD calculations in ψ (2S) and χ_{CJ} regions.
- There are some hints of excited baryon states, but no conclusions because of statistics.
- We are taking more $\psi(\text{2S})$ data now, and plan to collect 3 Billion $\psi(\text{2S})$ events.
- More results are expected.

