

J/ψ and Y(nS) production vs. event activity

QWG 2021: The 14th International Workshop on Heavy Quarkonium, 15-19 Mar 2021, Davis, CA (United States)

Quarkonium production at CMS

- The understanding of Quarkonia production can give an unique insight into QCD
- · CMS is a general purpose experiment ideal for its studies
 - Large sample of Quarkonia collected in their μ+μ-decays an highly flexible High Level Trigger
 - paths dedicated to specific analyses
 - Many Quarkonia production results for LHC Run 1 and Run2
 - Full picture of the event with high precision tracking and calorimetry
 - study of the connection between quarkonia and event activity
- · In this talk highlight on two recent results:
 - Study of J/ ψ meson production from jet fragmentation in pp collisions at $\sqrt{s}=8$ TeV [Phys. Lett. B 804 (2020) 135409]
 - Investigation into the event-activity dependence of Y(nS) relative production in proton-proton collisions at $\sqrt{s}=7$ TeV [JHEP 11 (2020) 001]

Y(ns) ratio vs Multiplicity

- Y(nS) production extensively studied in Heavy Ions collision as a probe for studying the Quark Gluon Plasma (QCD)
 - Colour Screening and thermal broadening of spectral functions:
 - Sequential suppression of Y(nS) states
 - Y(nS) as a probe of QGP temperature
 - Colour recombination of uncorrelated quark negligible in bottomonium w.r.t. charmonium
- CMS studied Y(nS) production in PbPb, pPb collisions, founding evidence of suppression
 - In the small pp collision (2.76 TeV) reference sample the ratio showed a decrease with the number of charged particles produced in the collision
 - Extended studies performed using the full 7 TeV data sample (Pile-Up ~7).

Yields and Multiplicity definitions

Y(nS) kinematic region: |y|< 1.2 and p_T>7(0) GeV

- Yields from extended binned maximum likelihood fit
- Event-by-event efficiency correction based on Tag&Probe on data
- Acceptance correction considering unpolarised hypothesis

Charged Track Selection: |y|<2.4 and p_T>0.4 GeV

- Multiplicity of the production vertex associated to the Y(nS)
- Unfolded using MC taking into account
 - tracker detector efficiency
 - effect bin migration due to merging of Pile-Up vertices
- Evaluated corresponding fraction in Minimum Bias events to facilitate comparisons.

$N_{ m track}$	$\langle N_{ m track} angle$	$N_{ m track}^{ m true} \left(p_{ m T}^{ m track} > 0.4 { m GeV} ight)$	$N_{\rm track}^{\rm true} \left(p_{\rm T}^{\rm track} > 0 {\rm GeV} \right)$	MB (%)
0–6	$4.2 \pm 0.2 \pm 0.1$	4.2 ± 0.3	6.6 ± 0.6	26.94 ± 0.03
6–11	$8.8 \pm 0.4 \pm 0.3$	8.9 ± 0.4	14.9 ± 0.9	16.73 ± 0.03
11–15	$13.1 \pm 0.5 \pm 0.4$	13.4 ± 0.4	22.7 ± 0.9	10.21 ± 0.02
15–19	$17.1 \pm 0.7 \pm 0.6$	17.1 ± 0.4	28.5 ± 0.9	8.39 ± 0.02
19–22	$20.5 \pm 0.8 \pm 0.7$	20.7 ± 0.4	35.4 ± 1.0	5.36 ± 0.02
22–25	$23.5 \pm 0.9 \pm 0.8$	23.5 ± 0.4	40.3 ± 1.0	4.70 ± 0.02
25–28	$26.5 \pm 1.0 \pm 0.9$	26.4 ± 0.4	43.6 ± 1.0	4.12 ± 0.01
28-31	$29.5 \pm 1.2 \pm 1.0$	29.3 ± 0.5	48.5 ± 1.0	3.61 ± 0.01
31–34	$32.5 \pm 1.3 \pm 1.1$	32.2 ± 0.5	53.0 ± 1.0	3.12 ± 0.01
34–37	$35.5 \pm 1.4 \pm 1.2$	35.1 ± 0.5	57.6 ± 1.0	2.72 ± 0.01
37–40	$38.5 \pm 1.5 \pm 1.3$	38.0 ± 0.5	62.1 ± 1.1	2.60 ± 0.01
40 - 44	$42.0 \pm 1.6 \pm 1.4$	41.3 ± 0.5	67.2 ± 1.1	2.36 ± 0.01
44–48	$45.9 \pm 1.8 \pm 1.5$	45.1 ± 0.6	72.8 ± 1.2	2.21 ± 0.01
48 - 53	$50.4 \pm 2.0 \pm 1.7$	49.4 ± 0.6	79.1 ± 1.2	2.01 ± 0.01
53-59	$55.8 \pm 2.2 \pm 1.9$	54.4 ± 0.6	86.6 ± 1.2	1.75 ± 0.01
59-67	$62.7 \pm 2.5 \pm 2.1$	60.8 ± 0.6	95.8 ± 1.3	1.41 ± 0.01
67-80	$72.6 \pm 2.9 \pm 2.4$	69.6 ± 0.6	109.2 ± 1.3	1.12 ± 0.01
80-95	$86.0 \pm 3.4 \pm 2.9$	81.9 ± 0.6	126.4 ± 1.4	0.459 ± 0.005
95–110	$100.1 \pm 4.0 \pm 3.3$	95.8 ± 0.9	145.0 ± 1.6	0.121 ± 0.002
110–140	$118.7 \pm 4.9 \pm 3.9$	109.4 ± 1.2	164.5 ± 2.0	0.0038 ± 0.0001

Y(ns) ratio vs Multiplicity

- Decrease in the ratios from low- to high-*Multiplicity* bins.
- Fitted with an exponential function:
 - $(-22 \pm 3)\%$ for Y(2S)/Y(1S)
 - (-42±4)% for Y(3S)/Y(1S)

- Comparison with previous results
 - pp collision at 2.76 TeV
 - pPb collision at 5.02 TeV
 - Observed a compatible behaviour

- Absolute values of the ratios are smaller at lower p_T
- Ratios increase with p_T as already measured also in CMS

Mean pt vs Multiplicity

- p_T spectra of the Dimuon candidates are obtained using sPlot technique
 - rescaled for efficiency and acceptance
- We observe a hierarchical structure:
 - transverse momentum increases more rapidly with *Multiplicity* as the mass of the corresponding Y(nS) increases.

An increase with particle mass was also observed in pp collisions at the LHC for pions, kaons, and protons.

Dependence on pt

- Doubly differential study: ratios vs multiplicity in different Dimuon p_T regions
- In all the p_T ranges the decrease with increase Multiplicity is observed
 - Strongest decrease in the 5-7 GeV bin
- Slower decrees at higher p_T
 - The Y(2S)/Y(1S) ratio in the 20-50 GeV range is compatible to be constant

Local multiplicity dependence

- Ratios measured as a function of the number of particles in 3 different Δφ regions with respect to the Dimuon direction
 - Test of the UE connection
- On average, there are ~3 less tracks in the transverse interval (11.90±0.05)

- Similar trends are obtained in the 3 angular regions.
- Decrease in the Transverse region suggests its connection with the UE itself
 - particles activity along the Y(nS) direction would effect only the Forward region.

Looking for comovers effect

- Ratios vs *Multiplicity* are evaluated in different condition of isolation
- Isolation is defined as the number of tracks in a cone:

$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 0.5$$

- We are looking for effect on the ratios coming from charged tracks produced along the Y momentum direction("comovers" in [Phys. Lett. B731(2014) 57])
- A data driven correction has been needed to take into account the effect of the feed down
 - This is particularly sizeable for Y(2S)/Y(1S) due to the $Y(2S) \to Y(1S)\pi\pi$ decay
- The dependence on the charged particle multiplicity is similar in all the categories
 - flattening in the $N_{track}^{\Delta R}$ >2 category, opposite to what would be expected in the comover picture.

Ratios vs Sphericity

 Finally, ratios were studied as a function of the event sphericity

$$S_{\rm T} \equiv rac{2\lambda_2}{\lambda_1 + \lambda_2}$$
 $S_{xy}^T = rac{1}{\sum_i p_{{
m T}i}} \sum_i rac{1}{p_{{
m T}i}} \left(egin{matrix} p_{xi}^2 & p_{xi}p_{yi} \\ p_{xi}p_{yi} & p_{yi}^2 \end{array}
ight)$ 0.4

- Decrease appears linked to the UE event:
 - not present in the low-sphericity region (high multiplicity due to jets)
 - appears in a similar way when S_T>0.55

Measurement of the J/ψ-jet association

- · The mechanism to go from a coloured QQ state to a colourless $c\bar{c}$ state from hadronic collision is of great theoretical interest
 - Early Colour singlet model (CSM), underestimated Tevatron J/ ψ and ψ (2S) production cross section by factors of 10-50.
- NRQCD approach (color-singlet+color-octet amplitudes) described Tevatron data and production at LHC
 - · Uses non-perturbative long-distance matrix elements (LDMEs). Adjusting LDMEs fits p_T -dependent J/ ψ and ψ (2S) differential cross sections from different data sets.
- Theoretical interest in jet source of heavy quarks
 - Testing role of jet fragmentation in quarkonium production
 - Described in Fragmenting-Jet Function (FJF) approach.

$$\frac{d\sigma(E_{jet},z)}{dE_{jet}dz} = H \times \Sigma_{a,b} f_{a/p} \otimes f_{b/p} \Sigma_i J_i \otimes \mathcal{G}^{\psi}(E_{jet},z|R,\mu)$$

- $G^{J/\psi}$ (containing all the $z = E_{J/\psi}/E$ dependence) can be decomposed using LDMEs leading contribution from c and g partons
 - · CMS: gluon-dominated mid-rapidity region
 - relevant g LDMEs: ³S₁(1), ³S₁(8), ¹S₀(1), ³P_J(8)

Events Selection

- 8 TeV data, 19.1 fb⁻¹
- · J/ψ : $E_{J/\psi} > 15 \text{ GeV}$, $|y_{J/\psi}| < 1$
 - combinatorial background removed by sideband subtraction
 - Selection of only promo event with with I_{J/ψ} selection
 - «Tag-and-probe» efficiencies used as event weights
- Jets: Anti-kT jets with R = 0.5
 - standard CMS jet energy and pileup corrections
 - $p_{T,jet} > 25 \text{ GeV}, |h_{jet}| < 1$
- · Reconstructed J/ ψ compared with all the jet in the event using a ΔR test

$$\Delta R = \sqrt{(\eta_{J/\psi} - \eta_{jet})^2 + (\phi_{J/\psi} - \phi_{jet})^2}$$

- Considering J/ψ associated when ΔR<0.5 :
- P(J/y associated | 1 jet) ~ 84%
 - P(J/y associated | 2 jets) ~ 94%
 - When unobserved jets (p_T< 25 GeV) are taken into account → jet fragmentation is a source of ~85% of J/ψ mesons

Measurement of the J/ψ-jet association

- LHCb measured the z distribution in events with a jet associated to J/ψ in high-rapidity region
 - Integrated in E_{jet}
 - Pythia8 (implementing CS+CO factorisation) does not describe data
 - FJF using LDME extraction by Bodwin et al. gives fairly good agreement
- Goal in CMS:
 - measure the experimental equivalent of normalized d²σ/dE_{jet} dz to have the sensitivity to different LDME parameter sets

The Ξ Observable in J/ψ-jet event

We considered the experimental quantity:

$$\Xi(E_{c};z_{1}) \equiv \frac{N(E_{c};z_{1})}{\int_{0.3}^{0.8} N(E_{c};z) dz}$$

where $N(E_c,z)$ = events in a $[E_{jet},z]$ bin

- Compare with 3 LDME parameter sets:
 - Bodwin, Chung, Kim, and Lee (BCKL) [Phys. Rev. Lett. 113 (2014) 022001]
 - Butenschoen and Kniehl (BK) [Mod. Phys. Lett. A 28 (2013) 1350027]
 - Chao, et al. (Chao) [Phys. Rev. Lett. 108 (2012) 242004]

- The N(E_c,z) need to be unfolded, considering jet energy resolution
 - Restricting in the range 56< E_{jet} <120 GeV (basically constant A \cdot ϵ)
 - · D'Agostini unfolding method [G. d'Agostini, arXiv:1010.0632] is used
 - · Four unfolding iterations gave stable matches to the MC and no sensitivity on the input distribution
 - There is no evidence that having a J/ ψ meson as a constituent affects the jet energy distribution

Data vs FJF total cross section predictions

- Considered 3 z_1 values, centres of z subregions with Δz = 0.05 from the measurement region 0.3 < z < 0.8.:
 - 0.425, 0.525, and 0.625
 - in these subregions FJF terms have different jet energy distributions for a given LDME parameter set.

- The data uncertainties include the statistical and systematic components added in quadrature.
- The normalisation theoretical uncertainty is negligible compared to the experimental uncertainty

Comparison of results

- χ^2 values calculated to match data and theory.
 - a priori decision of considering an acceptable match for χ^2 p-value > 0.1 %

	0.425	0.525	0.625
BCKL	22.2 (0.23%)	11.0 (14%)	10.7 (15%)
BK	59.6 (<0.001%)	60.1 (<0.001%)	64.0 (<0.001%)
Chao	267 (<0.001%)	96 (<0.001%)	164 (<0.001%)

- In all three z₁ ranges, only the FJF predictions with BCKL LDME parameters match data.
 - developed from a completely different data set (inclusive hadronic production data with $p_{J/\psi} > 10$ GeV)
 - known to predict small J/ψ polarisation, in agreement with experiments

Summary

- · CMS has produced important results correlating Quarkonia with event activity in pp collisions
 - For Y(nS) production vs Multiplicity
 - A significant decrease of the exited over ground state ratio for Bottomonium was observed in pp with 2011 CMS data.
 - The decrease is stronger at lower Y(nS) p_T
 - The decrease is linked to the UE
 - No effect found from Y(nS) isolation
 - Decrease disappears for jetty events
 - For J/ψ production in jets
 - jets found to be source of (85 ± 3 (stat) ± 7 (syst))% of the J/ ψ in E_{J/ ψ} > 15 GeV, $|y_{J/\psi}|$ < 1
 - shown that FJF analysis describe J/ψ meson production from central gluonic jets and the ability to distinguish among different sets of LDME parameters
 - Data found consistent with an NRQCD treatment of the FJF process using the BCKL parameter set.

BACKUP

CMS Integrated Luminosity Delivered, pp

CMS Average Pileup

Absolute fraction of J/ψ in jets

- Events with >0 jets (p_{T,jet}>25 GeV) and observed J/ψ account for 45% of the sample
 - Is an acceptance effect?
 - Raise p_{T,jet} selection from 25 to 30 GeV
 - P(> 0 jets | J/yψ) ~ **35**% **but unvaried** P(J/ψ associated | 1 jet) ~ 84%
- · Simple model to account for this effect:
 - The jet energy spectrum can be fit with a double-exponential function in the constant $A \cdot \epsilon$ (high-energy) region and extrapolated to low energies
 - · The J/ψ z-probability, when being a product of an unobserved jet fragmentation, is described by the gluon FJFs

$$A_i = N_i \sum_{j=1}^{55} p_j w(z_{ij})$$

- N_i = Extrapolated number of unobserved jets in E_{jet} bin in
- $\mathbf{p_j} = \text{Probability to fragment into J/}\psi$ in acceptance for each $E_{\text{J/}\psi}$ bin j (1-GeV bins from 15 to 70 GeV, taken from data)
- $w(z_{ij}) = z$ -probability from theory
- A_i = Estimated number of unobserved jets in E_{jet} bin i fragmenting into J/ψ
- Estimated fraction of J/ ψ from unobserved jets: $f_{un} = (43 \pm 3 \text{ stat} \pm 7 \text{ syst})\%$
- Estimated fraction of J/ ψ from jet fragmentation: $f_{tot} = f_{obs} \cdot P + f_{un} = (85 \pm 3 \text{ stat} \pm 7 \text{ syst})\%$

Prompt fraction measurement

- · Fit on dimuon invariant mass and pseudo-proper decay length
 - to measure prompt and non-prompt yields simultaneously
 - to disentangle the two contributions
- Pseudo-proper time measured thanks to precision tracking

