

Feng-Kun Guo

Institute of Theoretical Physics, CAS

The 14th International Workshop on Heavy Quarkonium (QWG 2021)

15-20 March 2021 @zoom

Based on:

Z.-H. Zhang, FKG, X atom: a new key to revealing the X(3872) mystery, arXiv:2012.08281

X(3872): mass

PDG2020 average from the $J/\psi\rho$ and $J/\psi\omega$ modes

$\boldsymbol{\chi}_{c1}(3872)$ MASS FROM $\boldsymbol{J}/\psi \boldsymbol{X}$ MODE

VALUE (MeV)	EVTS		DOCUMENT ID		TECN	COMMENT
3871.69 ± 0.17	OUR AVERAGE					
$3871.9 \pm 0.7 \pm 0.2$	$20~{\pm}5$		ABLIKIM	2014	BES3	$e^+ e^- ightarrow J/\psi \pi^+\pi^- \gamma$
$3871.95 \pm 0.48 \pm 0.12$	0.6k		AAIJ	2012H	LHCB	$p \; p o J/\psi \pi^+\pi^- X$
$3871.85 \pm 0.27 \pm 0.19$	\sim 170	1	CHOI	2011	BELL	$B o K \pi^+ \pi^- J/\psi$
$3873 \ _{-1.6}^{+1.8} \pm 1.3$	27 ± 8	2	DEL-AMO- SANCH	2010B	BABR	$B ightarrow\omega J/\psi K$
$3871.61 \pm 0.16 \pm 0.19$	6k	3, 2	AALTONEN	2009AU	CDF2	$p \ \overline{p} ightarrow J/\psi \pi^+\pi^- X$
$3871.4 \ {\pm}0.6 \ {\pm}0.1$	93.4		AUBERT	2008Y	BABR	$B^+ o K^+ J/\psi \pi^+ \pi^-$
$3868.7 \pm 1.5 \pm 0.4$	9.4		AUBERT	2008Y	BABR	$B^0 o K^0_S \; J/\psi \pi^+\pi^-$
$3871.8 \pm 3.1 \pm 3.0$	522	4, 2	ABAZOV	2004F	D0	$p \ \overline{p} ightarrow J/\psi \pi^+\pi^- X$

Latest LHCb determination w/ Flatte

LHCb, PRD102(2020)092005

NSPIRE search

 $M_X = 3871.69^{+0.05}_{-0.14}$ MeV

Coincides with the $D^0 \overline{D}^{*0}$ threshold:

 $M_{D^0} = (1864.84 \pm 0.05) \text{ MeV}, \quad M_{D^{*0}} = (2006.85 \pm 0.05) \text{ MeV}$ PDG average:

Precise measurements of $\delta = M_{D^0} + M_{\overline{D}^{*0}} - M_X$ and $\Gamma_X \Rightarrow$ probability of the $D^0\overline{D}^{*0}$ component in the X wave function

• X(3872): strong coupling to $D^0 \overline{D}^{*0}$

Unavoidably extended, large radius, $r_X \simeq \frac{1}{\sqrt{2\mu_0 \delta}} \gtrsim 10 \text{ fm}$

- The same order as the Bohr radius of Coulomb bound state of D^-D^{*+} , D^+D^{*-} : hadronic atoms $r_B = \frac{1}{\alpha\mu_c} = 27.86 \text{ fm}$
- $\mu_0 = \frac{m_{D^0} m_{D^{*0}}}{\Sigma_0} \quad \mu_c = \frac{m_D m_{D^*}}{\Sigma_c} \quad \text{thresholds: } \Sigma_{0,c}$ • Coulomb binding energies: $E_n = \frac{\alpha^2 \mu_c}{2n^2} = \frac{25.81 \text{ keV}}{n^2}$
- Nor Nor Nor
- For production: the more extended, the more difficult to be produced. ($\sigma \propto \delta^{1/2})$
- X atom: The ground state $D^{-}D^{*+} D^{+}D^{*-}$ atom with C = +

- Scale separation: $r_B \Lambda_{QCD} \gg 1$, strong interaction is a perturbation for hadronic atoms:
 - → Correction to the binding energy: $\Delta E_n = O(\alpha^3)$
 - > Decay modes: $D^0 \overline{D}^{*0}, D^0 \overline{D}^0 \pi^0, J/\psi \pi \pi, ...$
- For X atom, strong interaction by itself is nonperturbative due to the existence of X(3872)

D**
م کم ۲
مم
D

- Nonrelativistic effective field theory (NREFT) for coupled channels:
 - $\succ 1^{++} D^0 \overline{D}^{*0}$
 - $\succ 1^{++} D^+ D^{*-}$
 - > The D^+D^{*-} Green function contains both Coulomb bound states and

continuum

Around the threshold, LO in NREFT: constant contact terms for strong interaction

$$\begin{aligned} \mathcal{L} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \sum_{\phi = D^{\pm}, D^{0}, \bar{D}^{0}} \phi^{\dagger} \left(iD_{t} - m_{\phi} + \frac{\nabla^{2}}{2m_{\phi}} \right) \phi \\ &+ \sum_{\phi = D^{*\pm}, D^{*0}, \bar{D}^{*0}} \phi^{\dagger} \left(iD_{t} - m_{\phi} + i\frac{\Gamma_{\phi}}{2} + \frac{\nabla^{2}}{2m_{\phi}} \right) \phi \\ &- \frac{\mathcal{C}_{0}}{2} (D^{+}D^{*-} - D^{-}D^{*+})^{\dagger} (D^{+}D^{*-} - D^{-}D^{*+}) \\ &- \frac{\mathcal{C}_{0}}{2} \left[(D^{+}D^{*-} - D^{-}D^{*+})^{\dagger} (D^{0}\bar{D}^{*0} - \bar{D}^{0}D^{*0}) + \text{h.c.} \right] \\ &- \frac{\mathcal{C}_{0}}{2} (D^{0}\bar{D}^{*0} - \bar{D}^{0}D^{*0})^{\dagger} (D^{0}\bar{D}^{*0} - \bar{D}^{0}D^{*0}) + \cdots, \end{aligned}$$

- Approximation: Isospin-1 strong interaction neglected
 - > No isovector state was found
 - Isospin breaking in the couplings is small: Hanhart et al., PRD85(2012)011501

$$\frac{g_{X\rho}}{g_{X\omega}} = 0.26^{+0.08}_{-0.05}$$

• The T-matrix for positive C parity channels: $T(E) = V[1 - G(E)V]^{-1}$

$$V = C_0 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad G(E) = \begin{pmatrix} J_0(E) & 0 \\ 0 & J_c(E) + J_{|\Psi\rangle}(E) \end{pmatrix}$$

$$J_{0}(E) = \frac{\mu_{0}}{2\pi} \left(-\frac{2\Lambda}{\pi} + \sqrt{-2\mu_{0}(E + \Delta + i\Gamma_{0}/2)} \right), \quad \text{(b)} \quad \Delta = \Sigma_{c} - \Sigma_{0}$$
$$J_{c}(E) = \frac{\mu_{c}}{2\pi} \left(-\frac{2\Lambda}{\pi} + \sqrt{-2\mu_{c}(E + i\Gamma_{c}/2)} \right), \quad \text{(c)}$$
$$J_{|\Psi\rangle}(E) = \sum_{n=1}^{\infty} \frac{\alpha^{3}\mu_{c}^{3}}{\pi n^{3}} \frac{1}{E + E_{n} + i\Gamma_{c}/2}, \quad \sum_{n=1}^{\Sigma^{\Psi_{n}}} \text{(c)}$$

• The T-matrix has infinity of poles: X(3872), hadronic atoms

$$T(E) = \frac{1}{C_0^{-1} - \left[J_0(E) + J_c(E) + J_{|\Psi\rangle}(E)\right]} \begin{pmatrix} 1 & 1\\ 1 & 1 \end{pmatrix}$$

Renormalization: $C_{0R}^{-1}=C_0^{-1}+\Lambda(\mu_0+\mu_c)/\pi^2$

• X(3872) gives the renormalization condition: pole at $E = -\Delta - \delta - i \frac{\Gamma_0}{2}$

$$egin{aligned} C_{0R}^{-1} =& rac{\mu_0}{2\pi} \sqrt{2\mu_0 \delta} + rac{\mu_c}{2\pi} \sqrt{2\mu_c \left(\Delta + \delta - irac{\delta\Gamma}{2}
ight)} - \sum_{n=1}^{\infty} rac{lpha^3 \mu_c^3}{\pi n^3} rac{1}{\Delta + \delta - E_n - i\delta\Gamma/2} \ &= rac{\mu_c}{2\pi} \sqrt{2\mu_c \Delta} iggl[1 + \mathcal{O}iggl(rac{\delta}{\Delta}, rac{\delta\Gamma}{\Delta}, rac{lpha^3 \mu_c^{3/2}}{\Delta^{3/2}}iggr) iggr] \end{aligned}$$

• S-wave hadronic atom poles: $E = -E_{An} - i rac{\Gamma_c}{2}$

$$0 = C_{0R}^{-1} + i rac{\mu_0}{2\pi} \sqrt{2\mu_0 igg(\Delta - E_{An} - i rac{\delta\Gamma}{2}igg)} - rac{\mu_c}{2\pi} \sqrt{2\mu_c E_{An}} - \sum_{n=1}^\infty rac{lpha^3 \mu_c^3}{\pi n^3} rac{1}{-E_{An} + E_n}$$

• X atom binding energy and decay width (due to decays of D^{*-} and into $D^0 \overline{D}^{*0}$)

9

Isospin symmetry: the short-distance parts are the same

$$R_{\Gamma}\equiv rac{\Gamma_{B^+
ightarrow A_1K^+}}{\Gamma_{B^0
ightarrow XK^0}}=rac{\left|g_{A1}
ight|^2}{\left|g_{X}
ight|^2} \qquad \qquad R_{\sigma}\equiv rac{d\sigma_{pp
ightarrow A_1+y}}{d\sigma_{pp
ightarrow X+y}}=rac{\left|g_{A1}
ight|^2}{\left|g_{X}
ight|^2}$$

• Production rate for the X atom:

$$R_{\Gamma} \simeq R_{\sigma} \gtrsim 8 \times 10^{-3}$$

• Null signal leads to a lower bound on the X(3872) binding energy

$$\delta \simeq \frac{11 \text{ eV}}{R_{\Gamma}^2} \simeq \frac{11 \text{ eV}}{R_{\sigma}^2}$$

3.9

Conclusion

- The X(3872) has been discovered for 17 years, debates continue
- Important to precisely measure the binding energy and width of X(3872):
 - X atom can be used to set a lower limit on the X(3872) binding energy and to understand the debates regarding the production

Thank you for your attention!

EFT, models