Search for new light vector boson using J/ψ at e^+e^- colliders

Youngjoon Kwon

yjkwon63@yonsei.ac.kr

Yonsei University Seoul, Korea

Mar. 16, 2021 @ QWG 2021

Y. Kwon (Yonsei Univ.)

Search for new light vector boson using J/ψ ...

Mar. 16, 2021 @ QWG 2021

Outline

- Introduction & motivations
- Modeling of the interaction
- Using $J/\psi \to \eta_c \ e^+ e^-$
 - * method for BESIII
 - * method for Belle II
- Using $e^+e^- \rightarrow X + J/\psi$ (with displaced vertex)
- Summary

(Note 1) based on arXiv:2012.04190, to appear in JHEP (K. Ban, Y. Jho, YJK, S.C. Park, S.H. Park, P.Y. Tseng). (Note 2) This is a phenomenological work. Any mention of BESIII or Belle II is only for conceptual discussions.

Y. Kwon (Yonsei Univ.)

Motivations

- ► ∃ experimental and observational claims for discrepancies from the SM
- calling for extension of the SM
 - * e.g. by adding a new sector gauging the lepton number, $L_{\mu} L_{\tau}$
 - * proposed for $(g 2)_{\mu}$, DM, EDGES 21 cm anomaly, etc.
- X17 'anomaly' from ATOMKI
 - * ${}^{8}\text{Be}^{*}(1^{+}) \rightarrow {}^{8}\text{Be}(0^{+}) + e^{+}e^{-}$
 - * is it a new particle with $m_X \sim 17$ MeV?

▶ High- $\mathcal{L} e^+ e^-$ colliders – ideal place to test *X*17

Motivations

- I experimental and observational claims for discrepancies from the SM
- calling for extension of the SM
 - $^*\,$ e.g. by adding a new sector gauging the lepton number, $L_{\mu}-L_{\tau}$
 - * proposed for $(g 2)_{\mu}$, DM, EDGES 21 cm anomaly, etc.
- ▶ *X*17 'anomaly' from ATOMKI
 - * ${}^{8}\text{Be}^{*}(1^{+}) \rightarrow {}^{8}\text{Be}(0^{+}) + e^{+}e^{-}$
 - * is it a new particle with $m_X \sim 17$ MeV?

• High- $\mathcal{L} e^+ e^-$ colliders – ideal place to test X17

Modeling \mathcal{L}_{eff}

$$\mathcal{L}_{\rm eff} \supset -eX_{\mu} \sum_{f} \varepsilon_{f} \bar{f} \gamma^{\mu} f$$

- X a new vector boson interacting with an SM fermion f via L_{eff}
- ► ε_f a free (effective) parameter for the $Xf\bar{f}$ coupling
- (Note) the new interactions do not induce any gauge anomaly by construction
- ATOMKI $\Rightarrow m_X \simeq 17$ MeV, $|\varepsilon_u + \varepsilon_d| \simeq 3.7 \times 10^{-3}$
- ▶ NA48/2 $(\pi^0 \to X\gamma) \Rightarrow |2\varepsilon_u + \varepsilon_d| < 8 \times 10^{-4}$ (protophobic) combining the two, $\varepsilon_u \simeq \pm 3.7 \times 10^{-3}$, $\varepsilon_d \simeq \mp 7.4 \times 10^{-3}$
- ▶ for coupling to leptons, use beam dump (SLAC E141), $(g 2)_{\mu}$, νe scattering

$$\begin{split} 4.2\times10^{-4} &\lesssim |\varepsilon_e| \lesssim 1.4\times10^{-3} \\ &\sqrt{\varepsilon_e\varepsilon_\nu} \lesssim 7\times10^{-5} \end{split}$$

Y. Kwon (Yonsei Univ.)

▶ Use $e^+e^- \rightarrow J/\psi \rightarrow \eta_c X(\rightarrow e^+e^-)$ at $\sqrt{s} = m_{J/\psi}$ for the signal process

 $\blacktriangleright e^+e^- \to J/\psi \to \eta_c \ \gamma^*(\to e^+e^-)$

* an SM background; same final state as the signal

decay width

- ► Use $e^+e^- \rightarrow J/\psi \rightarrow \eta_c X(\rightarrow e^+e^-)$ at $\sqrt{s} = m_{J/\psi}$ for the signal process
- $\blacktriangleright e^+e^- \to J/\psi \to \eta_c \ \gamma^*(\to e^+e^-)$
 - * an SM background; same final state as the signal

1

decay width

$$\begin{split} \Gamma(J/\psi \to \eta_c \gamma) &= \frac{1}{3} \frac{\alpha_{\rm EM} (m_{J/\psi}^2 - m_{\eta_c}^2)^3}{8m_{J/\psi}^3} \left| f_{\rm VP}(0) \right|^2 \\ &\frac{d\Gamma_{\eta_c \gamma^*}}{dq^2 \Gamma_{J/\psi \to \eta_c \gamma}} = \left| F_{\rm VP}(q^2) \right|^2 \times F_{\rm QED}(q^2) \\ &\frac{d\Gamma_{\eta_c X^*}}{dq^2 \Gamma_{J/\psi \to \eta_c \gamma}} = \left| F_{\rm VP}(q^2) \right|^2 \times F_X(q^2) \end{split}$$

*
$$F_{\rm VP}(q^2) \equiv f_{\rm VP}(q^2)/f_{\rm VP}(0) = 1/(1 - \frac{q^2}{\Lambda^2})$$
, with $\Lambda = m_{\psi'} \approx 3.69$ GeV for J/ψ
* kinematic window : $(2m_e)^2 \le q^2 = m_{e^+e^-}^2 \le (m_{J/\psi} - m_{\eta_c})^2$

$$\begin{split} \Gamma(J/\psi \to \eta_c \gamma) &= \frac{1}{3} \frac{\alpha_{\rm EM} (m_{J/\psi}^2 - m_{\eta_c}^2)^3}{8m_{J/\psi}^3} |f_{\rm VP}(0)|^2 \\ &\frac{d\Gamma_{\eta_c \gamma^*}}{dq^2 \Gamma_{J/\psi \to \eta_c \gamma}} = |F_{\rm VP}(q^2)|^2 \times F_{\rm QED}(q^2) \\ &\frac{d\Gamma_{\eta_c X^*}}{dq^2 \Gamma_{J/\psi \to \eta_c \gamma}} = |F_{\rm VP}(q^2)|^2 \times F_X(q^2) \end{split}$$

$$\begin{aligned} \text{QED}(q^2) &= \frac{\alpha}{3\pi} \frac{1}{q^2} \left(1 - \frac{4m_l^2}{q^2} \right)^{\frac{1}{2}} \left(1 + \frac{2m_l^2}{q^2} \right) \\ & \times \left[\left(1 + \frac{q^2}{m_V^2 - m_P^2} \right)^2 - \frac{4m_V^2 q^2}{(m_V^2 - m_P^2)^2} \right]^{\frac{3}{2}}. \end{aligned}$$

$$F_X(q^2) = \frac{\alpha_{\text{EM}}(\varepsilon_c \cdot \varepsilon_e)^2}{3\pi} \left(\frac{q^2}{\left[(q^2 - m_X^2)^2 + m_X^2 \Gamma_X^2 \right]} \right) \\ \times \left(1 - \frac{4m_e^2}{q^2} \right)^{1/2} \left(1 + \frac{2m_e^2}{q^2} \right) \left[\left(1 + \frac{q^2}{m_{J/\psi}^2 - m_{\eta_c}^2} \right)^2 - \frac{4m_{J/\psi}^2 q^2}{(m_{J/\psi}^2 - m_{\eta_c}^2)^2} \right]^{3/2}$$

$$\Gamma_{X \to e^+e^-} = \frac{\varepsilon_e^2 \alpha_{\rm EM} m_X}{3} \left(1 + \frac{2m_e^2}{m_X^2} \right) \sqrt{1 - \frac{4m_e^2}{m_X^2}}$$

 $\Gamma_{X \to e^+e^-}$ dominates the width as we assume very small ε_{ν} and $m_X < 2m_{\pi}$

Y. Kwon (Yonsei Univ.)

Search for new light vector boson using J/ψ ...

Collecting the above information, we have

$$\mathcal{B}(J/\psi \to \eta_c X^* \to \eta_c \ e^+ e^-) = 1.64 \times 10^{-6} \left(\frac{\varepsilon_c}{10^{-2}}\right)^2$$
$$\mathcal{B}(J/\psi \to \eta_c \gamma^* \to \eta_c \ e^+ e^-) = 1.03 \times 10^{-4}$$

Expected sensitivity for BESIII

$$S = N_{J/\psi} \times \frac{\int_{(m_X - \sigma_m)^2}^{(m_X + \sigma_m)^2} dq^2 \frac{d\Gamma_{\eta_C X^*}}{dq^2}}{\Gamma_{J/\psi}}, \ B = N_{J/\psi} \times \frac{\int_{(m_X - \sigma_m)^2}^{(m_X + \sigma_m)^2} dq^2 \frac{d\Gamma_{\eta_C Y^*}}{dq^2}}{\Gamma_{J/\psi}}$$

TABLE II. For $N_{J/\Psi} = 10^{11}$ and favoured parameters $\varepsilon_c = \varepsilon_u = 3.7 \times 10^{-3}$, $\varepsilon_e = 10^{-3}$, $m_X = 17$ MeV for ⁸Be^{*} anomaly, the significances of signal to background from $J/\Psi \rightarrow \eta_c e^+ e^-$ with various energy resolutions of detector and 1.23% η_c reconstruction efficiency.

	$\sigma_m{=}1~{\rm MeV}$	$\sigma_m{=}2~{\rm MeV}$	$\sigma_m{=}5~{\rm MeV}$	$\sigma_m{=}10~{\rm MeV}$	$\sigma_m {=} 15 \text{ MeV}$
S	188	263	277	277	277
B	3686	7399	18989	42436	87640
S/\sqrt{B}	3.10	3.06	2.01	1.34	0.94

 $1.23\% = \sum_i \mathcal{B}_i \epsilon_i$

Y. Kwon (Yonsei Univ.)

Expected sensitivity for BESIII

Instead of explicitly reconstructing η_c , one may use the recoil mass against e^+e^- to check η_c thus avoiding the 1.23% scale. Due to small mass gap $(J/\psi - \eta_c)$, identification of e^+e^- might be an issue experimentally.

signal $J/\psi \to X\eta_c$

background $J/\psi \rightarrow \gamma^* \eta_c$

 $\sigma(e^+e^- \to \gamma^* + J/\psi \to e^+e^-J/\psi) = 286 \text{ fb}, \quad \sigma(e^+e^- \to \gamma^* + J/\psi \to \mu^+\mu^-J/\psi) = 58.4 \text{ fb}$

signal $J/\psi \to X\eta_c$

background $J/\psi \rightarrow \gamma^* \eta_c$

 $\sigma(e^+e^- \to \gamma^* + J/\psi \to e^+e^-J/\psi) = 286 \text{ fb}, \quad \sigma(e^+e^- \to \gamma^* + J/\psi \to \mu^+\mu^-J/\psi) = 58.4 \text{ fb}$

S and B to estimate the expected sensitivity

$$S = \mathcal{L} \times \sigma(e^+e^- \to \ell^+\ell^- J/\psi) \times \operatorname{Br}(J/\psi \to \eta_c X^* \to \eta_c e^+e^-) \simeq 28.2 \left(\frac{\varepsilon_c}{10^{-2}}\right)^2$$
$$B = \mathcal{L} \times \sigma(e^+e^- \to \ell^+\ell^- J/\psi) \times \operatorname{Br}(J/\psi \to \eta_c \gamma^* \to \eta_c e^+e^-) \simeq 1772$$

Method (1) for Belle II – MC study

 Use MadGraph & FeynRules for simulation with EM decay amplitude¹

$$T(V \to P e^+ e^-) = 4\pi \alpha_{\rm EM} f_{\rm VP} \, \epsilon^{\mu\nu\rho\sigma} p_\mu q_\nu \epsilon_\rho \frac{1}{q^2} \bar{u}_1 \gamma_\sigma v_2$$

and interaction $\boldsymbol{\mathcal{L}}$

$$\mathcal{L} \supset f_{\mathrm{VP}}(-2\sqrt{\pi\alpha_{\mathrm{EM}}}\partial_{\mu}P\partial_{\nu}V_{\rho}\epsilon^{\mu\nu\rho\sigma}A_{\sigma} - g_{Xc}\partial_{\mu}P\partial_{\nu}V_{\rho}\epsilon^{\mu\nu\rho\sigma}X_{\sigma}) - g_{ev}\bar{e}\gamma^{\mu}eV_{\mu} - g_{Xe}\bar{e}\gamma^{\mu}eX_{\mu}$$

- Background control
 - * baseline cuts
 - $|\eta_{\ell^{\pm}}^{*}| \le 1.60$ (CM frame); $|E_{\mu^{\pm}}| \ge 0.6$ GeV, and $|E_{e^{\pm}}| \ge 0.06$ GeV (lab frame)
 - * photon conversion in the beam pipe or vertex detector use e^+e^- vertex position
 - * $e^+e^- \rightarrow \ell^+\ell^- + (anything) low-momentum charged particles in the "anything" may fake the$ *e* $-ID, but it does not peak in <math>M_{\ell^+\ell^-}^{\text{recoil}} \simeq m_{J/\psi}$

¹L.-M. Gu *et al.*, PRD **100**, 016018 (2019)

Method (1) for Belle II – MC study

[Left] Recoil mass against $e^+e^-\ell^+\ell^-$, whereby non- J/ψ , non- η_c events can be suppressed; [Right] Invariant mass of e^+e^- , looking for any peaking structure

Processes	(B) $\eta_c \gamma^* \to \eta_c ee$	(S) $\eta_c X \to \eta_c e e$		
N(generated)	100000	100000		
Baseline Cuts	7170	6290		
$ M_{ee\ell\ell}^{ m rec} - m_{\eta_c} \le 200 \text{ MeV}$	7071	6219		
$ M_{ee} - m_X \le 2 \text{ MeV}$	377	5880		

Method (1) for Belle II – MC study

[Left] Recoil mass against $e^+e^-\ell^+\ell^-$, whereby non- J/ψ , non- η_c events can be suppressed; [Right] Invariant mass of e^+e^- , looking for any peaking structure

Processes	(B) $\eta_c \gamma^* \to \eta_c ee$	(S) $\eta_c X \rightarrow \eta_c ee$
N(generated)	100000	100000
Baseline Cuts	7170	6290
$ M_{ee\ell\ell}^{\rm rec} - m_{\eta_c} \le 200 {\rm MeV}$	7071	6219
$ M_{ee} - m_X \le 2 \text{ MeV}$	377	5880

Luminosity	50 ab^{-1}	100 ab^{-1}	200 ab^{-1}	Sensitivity on ε_c , by requiring $S/\sqrt{B} = 2$
$ \varepsilon_c $	$\gtrsim 1.76 \times 10^{-2}$	$\gtrsim 1.48 \times 10^{-2}$	$\gtrsim 1.24 \times 10^{-2}$	

Y. Kwon (Yonsei Univ.)

Search for new light vector boson using J/ψ ...

Method (2) for Belle II – displaced vertex

$$\blacktriangleright e^+e^- \to X(\to e^+e^-) + J/\psi(\to \ell^+\ell^-)$$

* *Xee* vertex at tree level \Rightarrow signal strength depends on ε_e only

Method (2) for Belle II – displaced vertex

$$\blacktriangleright e^+e^- \to X(\to e^+e^-) + J/\psi(\to \ell^+\ell^-)$$

* Xee vertex at tree level \Rightarrow signal strength depends on ε_e only

- * γ conversion (as main SM bkgd.) at the beampipe ($r_{\perp} \sim 1.0$ cm) and vertex detector layers ($r_{\perp} \gtrsim 1.4$ cm)
- * exploit the Belle II vertexing capability
- * e^{\pm} from X tend to have high- $p_{\rm T}$ ($\gtrsim O(1)$ GeV), enabling clean *e*-ID

Method (2) for Belle II – displaced vertex

$$\sigma(e^+e^- \to X + J/\psi) = 2.77 \times 10^{-2} \times \left(\frac{\varepsilon_e}{10^{-3}}\right)^2 \text{ fb}$$

▶ transverse flight distance of *X*

* Figure (below) for $0.3 \times 10^{-3} \le \varepsilon_e \le 0.8 \times 10^{-3}$

^k ' r_{\perp} sweet spot' (cut) ⇒ 2 mm ≤ r_{\perp} ≤ 8 mm

Method (2) for Belle II – sensitivity estimation

$\varepsilon_e/10^{-4}$	8.0	7.0	6.0	5.0	4.5	4.0	3.0
Baseline Cuts(%)	13.8	13.8	13.8	13.8	13.8	13.8	13.8
$2mm < r_{\perp} < 8mm$ (%)	1.5	4.7	7.4	10.1	11.0	10.1	5.2
N_S	1.60	3.85	4.42	4.18	3.69	2.69	0.78
Significance $(B = 0.1)$	2.4σ	4.6σ	5.0σ	4.8σ	4.5σ	3.6σ	1.5σ
Significance $(B = 1)$	1.6σ	2.9σ	3.2σ	3.1σ	2.8σ	2.3σ	1.2σ

► (Case 1) Explicitly reconstruct $J/\psi \rightarrow \ell^+ \ell^-$ (' $e^+ e^- \ell^+ \ell^-$ channel')

Method (2) for Belle II – sensitivity estimation

$\varepsilon_e/10^{-4}$	8.0	7.0	6.0	5.0	4.5	4.0	3.0
Baseline Cuts(%)	13.8	13.8	13.8	13.8	13.8	13.8	13.8
$2mm < r_{\perp} < 8mm$ (%)	1.5	4.7	7.4	10.1	11.0	10.1	5.2
N_S	1.60	3.85	4.42	4.18	3.69	2.69	0.78
Significance $(B = 0.1)$	2.4σ	4.6σ	5.0σ	4.8σ	4.5σ	3.6σ	1.5σ
Significance $(B = 1)$	1.6σ	2.9σ	3.2σ	3.1σ	2.8σ	2.3σ	1.2σ

► (Case 1) Explicitly reconstruct $J/\psi \rightarrow \ell^+ \ell^-$ (' $e^+ e^- \ell^+ \ell^-$ channel')

(Case 2) Use recoil against $X \to e^+e^-$ to infer J/ψ (' e^+e^- channel')

$\varepsilon_e/10^{-4}$	8.0	7.0	5.0	4.0	3.0	2.0	1.0
Baseline Cuts(%)	17.6	17.6	17.6	17.6	17.6	17.6	17.6
$2mm < d_{xy} < 8mm(\%)$	1.6	5.3	12.3	12.9	7.4	2.3	0.5
N_S	14.6	35.7	42.7	28.7	9.23	1.28	0.07
Significance $(B = 0.1)$			$> 5\sigma$			2.2σ	0.4σ
Significance $(B = 1)$			$> 5\sigma$			1.6σ	0.9σ

Summary

- Notivated by ATOMKI, we investigate strategies to search for X in $\mathcal{O}(10)$ MeV using J/ψ at the intensity-frontier e^+e^- colliders (BESIII & Belle II).
- With displaced-vertex signature at Belle II, $10^{-4} \le |\varepsilon_e| \le 10^{-3}$ can be explored for 9 MeV $\le m_X \le 100$ MeV with 50 ab⁻¹ at Belle II.

Thank you!