

Light Dark Sectors through the Fermion Portal

Sebastian A. R. Ellis IPhT, CEA Saclay

> Based on: JHEP 07 (2020) 053 arXiv:2001.01490 L. Darmé, SARE, T. You

Mesons and dark matter

Many reasons to consider connections, e.g.:

• Dark sector could be SU(N) - glueball DM

e.g. Faraggi & Pospelov (2002) Feng & Shadmi (2011) Boddy et al (2014) Many more

• SIMP DM – dark pions as DM

e.g. Hochberg et al (2014) Hochberg et al (2015) Many more

Production of sub-GeV dark sector from mesons
 Production of mesons from sub-GeV dark sector

this talk

dark sector

/daːk 'sɛktə/

Noun: Umbrella term for BSM states w/ feeble or no interactions w/

SM, typically related to Dark Matter

"We hope to discover the nature of Dark Matter, and explore the dark sector"

Why go beyond mono-particle DM solution?

dark sector

/daːk ˈsɛktə/

Noun: Umbrella term for BSM states w/ feeble or no interactions w/

SM, typically related to Dark Matter

"We hope to discover the nature of Dark Matter, and explore the dark sector"

Consequence of feeble coupling in multi-state dark sector: *long-lived particles* χ_2 $c\tau_{\chi_2} \sim 100 \text{ m} \cdot \left(\frac{10^{-4}}{a_{\mathrm{D}}\epsilon}\right)^2 \left(\frac{5 \text{ MeV}}{\Delta_{\mathrm{V}}}\right)^5 \left(\frac{M_V}{100 \text{ MeV}}\right)^4$

Particularly relevant given current interest in *intensity frontier* experiments e.g. beam dumps, Belle-II, etc.

Thinking with portals

The Fermion Portal

Dark Sector Production

• Light meson decay $\pi^0 o \gamma \chi \chi$

associated decay

dark decay

• Heavy meson decay (charm, bottom) Beam Dumps

• Direct production $pp \to \chi\chi, pp \to j\chi\chi, ee \to \chi\chi, ee \to \gamma\chi\chi$

LEP, BaBar, Belle-II

• Bremsstrahlung* $p(e)N \rightarrow p(e)N\chi\chi$

Beam Dumps

LHC

*not considered in detail

Meson Decay

$$N_{\text{prod}} = \mathcal{N}_M \times \text{BR}(M \to \bar{\chi}_1 \chi_2(+X)) \propto \left(\frac{M_M}{\Lambda}\right)$$

experiment-specific				operator-dependent							
Meson decay	Vector current			Axial-vector current			Dat	k photon Γ_M (GeV)		(GeV)	
$\pi \to \gamma X X$	\overline{XX} $g_{\pi^0} = 2g_u + g_d$			/				$e\varepsilon$	$7.7 \cdot 10^{-7}$		
$\eta \to \gamma X X$	$g_{\eta} = 1.5g_u - 0.7g_d + 0.6g_s$			/				$e \varepsilon$	$1.3 \cdot 10^{-6}$		
$\eta' \to \gamma X X$	$g_{\eta'} = 1.2g_u - 0.6g_d - 0.9g_s$			/				$1.3 \ e\varepsilon$	$2.0 \cdot 10^{-4}$		
$\rho \to XX$	$g_{\rho} = 1.3g_u - 1.3g_d$			/			r	resonant		0.15	
$\omega \to XX$	$g_{\omega} = 1.2g_u + 1.2g_d$			/			r	resonant		$8.5 \cdot 10^{-3}$	
$\pi \to XX$	/			$ ilde{g}_{\pi^0} = (ilde{g}_u - ilde{g}_d)/\sqrt{2}$				/	$7.7 \cdot 10^{-7}$		
$\eta \to XX$	/			$ ilde{g}_\eta = 0.6 ilde{g}_u + 0.6 ilde{g}_d - 0.9 ilde{g}_s$			\tilde{J}_s	/	$1.3 \cdot 10^{-6}$		
$\eta' \to XX$	/			$\tilde{g}_{\eta'} = 0.5\tilde{g}_u + 0.5\tilde{g}_d + 1.1\tilde{g}_s$			\tilde{g}_s	/	$2.0 \cdot 10^{-4}$		
Experiment		E_{beam}	Target		PoT	N_{π^0}	N_{η}	$N_{\eta'}$	$N_{ ho}$	N_{ω}	
CHARM [27]		400 GeV	Cu		$2.4\cdot10^{18}$	2.4	0.3	0.03	0.3	0.25	
LSND [26]		$0.8 \mathrm{GeV}$	Water		$0.92\cdot 10^{23}$	0.14	0.	0	0	0	
MiniBooNE [28]		$8 { m GeV}$	Fe		$1.86\cdot10^{20}$	2.4	0.1	0	0.1	0.1	
SHiP [33]		$400 { m GeV}$	W / Pb*		$2\cdot 10^{20}$	10	1	0.08	1.1	1	
$NO\nu A$ [46]		$120 { m GeV}$	C		$3\cdot 10^{20}$	1	1/30	1/300	1/30	1/30	
SeaQuest [34]		$120~{\rm GeV}$	Fe		$1.44 \cdot 10^{18}$	3.5	0.4	0.04	0.4	0.4	
HL-LHC (barn) [30]		14 TeV	pp		$\mathcal{L} = 3 \text{ ab}^{-1}$	4.3	0.5	0.05	0.5	0.5	

4

Meson Decay

Meson Decay

Heavy Meson Decay

Direct Production

Putting it all together

Obtaining limits

$$\mathcal{N} \simeq \mathcal{N}_{\rm prod} \times \mathcal{E} \times \mathcal{P}_{\rm sig}$$

- Most limits in literature come from inelastic DM (iDM), w/ heavy state decaying via off-shell DP – *need recasting into EFT language*
 - Rescale for production rates $\Lambda_{\rm lim} \sim 400 \ {\rm GeV} \cdot \sqrt{g} \left(\frac{0.001}{\epsilon_{\rm lim}}\right)^{1/2} \left(\frac{\mathcal{N}_{\rm prod}^{\rm EFT}}{\mathcal{N}_{\rm prod}^{\rm iDM}}\right)^{1/8}$
 - Recompute detection efficiency for various mass splittings
 - Use upper limits to compute lower limits *conservative lower limits*
- Bump searches ineffective when mediator integrated out weakening of mono-X searches

Decays of heavier dark sector state into mesons crucial

Limits – Vector coupling, EM-aligned

Limits – Vector coupling, Heavy Mesons

Limits – Axial Vector coupling, Z-aligned

Future sensitivity

Conclusion

Important to go beyond monoparticle DM

Multi-particle Dark Sectors give rise to long-lived particles critical target for intensity frontier

EFT provides *natural framework* to study connection to general dark sector

Code for re-casting available at <u>https://github.com/Luc-Darme/DarkEFT</u>

BACKUP

Meson Decays in detail

3-body light mesons:

$$\Gamma_{P,\gamma} = \frac{2g_P^2}{\pi f_\pi^2 \Lambda^4} \frac{\alpha_{\rm em}}{3(4\pi)^5} \int_{(|M_1|+|M_2|)^2}^{M_P^2} ds \frac{s(M_P^2-s)^3}{M_P^3} \times \begin{cases} \sqrt{1-4M_1^2/s(1+2M_1^2/s)} & \text{small } \delta_{\chi}, \text{ V} \\ 2(1-4M_1^2/s)^{3/2} & \text{small } \delta_{\chi}, \text{ AV} \\ (2+M_2^2/s)(1-M_2^2/s)^2 & \text{non-degenerate} \end{cases}$$

2-body light mesons:

$$\Gamma_U = \frac{g_U^2 f_\pi^2}{24\pi} \frac{M_U^3}{\Lambda^4} \left(1 - \frac{(M_2 - M_1)^2}{M_U^2} \right)^{3/2} \left(1 - \frac{(M_2 + M_1)^2}{M_U^2} \right)^{1/2} \left(2 + \frac{(M_2 + M_1)^2}{M_U^2} \right)^{1/2} \left(2 + \frac{(M_2 - M_1)^2}{M_U^2} \right)^{1/2} \left(1 - \frac{(M_2 - M_1)^2}{M_1^2} \right)^{1/2} \left(1 - \frac{(M_2 - M_1)^2}{M_1^2} \right)^{1/2} \left(1$$

 g_U as defined on slide 8

3-body heavy mesons:

$$\begin{split} \Gamma_{P \to P' \chi \chi} \simeq \frac{g_{PP'}^2 |f_+(0)|^2}{\Lambda^4} \frac{M^8 - 8M^6 {M'}^2 + 8M^2 {M'}^6 - {M'}^8 + 24M^4 {M'}^4 \log M/M'}{768 \pi^3 M^3} \\ & \text{obtained from lattice} \\ & \text{QCDSF (2010)} \end{split} \text{ In massless DS limit} \end{split}$$

Sebastian A. R. Ellis – Light Dark Sectors through the Fermion Portal

Decays of dark sector states $\Gamma_2 = \frac{g_l^2}{\Lambda 4} \frac{M_2^3}{\pi^3} \mathcal{G}(M_1, M_2)$

Dependence on mass splitting

Dependence on coupling

Small mass splittings

