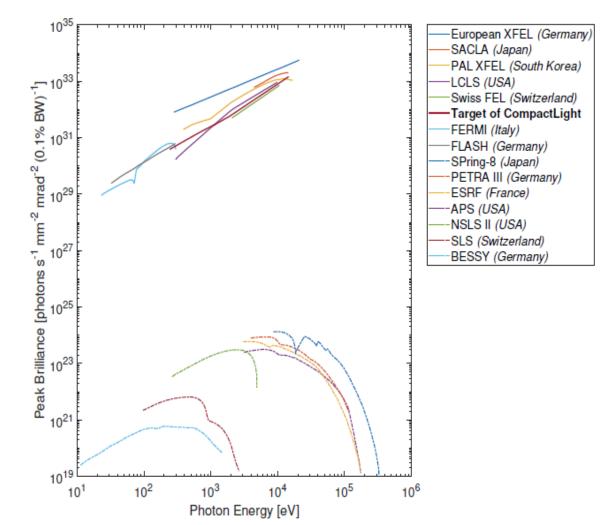


D2.2 Status

S. Di Mitri^{1)*}, A. Aksoy[†], A. Bernhard[‡], H. M. Castañeda Cortés[§], J. Clarke[§], G. D'Auria^{*}, D. Dunning[§], M. Ferrario[¶], A. Latina^{||}, E. Marin^{**}, F. Nguyen^{††}, T. Schmidt^{‡‡}, N. Thompson[§], W. Wuensch^{||}


On behalf of the CompactLight Partnership

D2.2: "FEL design with accelerator and undulator requirements to achieve the specification", <u>due by</u> Dec. 31, 2019

- 1. Identifies the main parameters of CompactLight FEL
- 2. Collects recommendations from all the WPs as for the accelerator and the undulator specs.
- 3. Provides an overview of the facility concept by illustrating:
 - the main features of the project
 - the operating modes
 - sub-systems concepts and/or technical requirements.

- a) The CL design reflects a 10-years (2027) ahead user facility.
 - this impacts the risk level below
- b) Surpasses state-of-the-art XFELs in peak and average brilliance, in a specific v-E region
 - This specifies the ultimate FEL performance
- c) Affords medium-risk technological R&D
 - e.g., S-band vs. C-band vs. X-band Gun
- d) Affords low-risk physics
 - e.g., optical FEL shaping vs. short e-bunches
- e) Results an advanced cost-effective XFEL user-facility
 - This sets cost vs. performance decisions

	Swi	ssFEL	CompactLight	
	SX	HX	SX	HX
lambda [nm]	0.7 - 5.0	0.1 - 0.7	0.6 - 5.0	0.08 - 0.6
photon energy [keV]	0.25 - 1.77	1.77 - 12.4	0.25 - 2.0	2.0 - 16
undulator tech.	Apple-X	IVU: LP, VG		
rep. rate [Hz]	100	100	100-1000	100
pulse duration fwhm [fs]	< 20	>1	0.1 - 50	1 - 50
pulse energy [uJ]	10 - 1000	10 - 1000	< 300	< 300
beam energy [GeV]	3.0	5.8	2.0	5.5
charge [pC]	10 - 200	10 - 200	75	75
normalized emittance slice rms [mm mrad]	0.25	0.25	0.20	0.20
normalized emittance proj. rms [mm mrad]	0.40	0.40	0.40	0.40
peak current [kA]	3	3	1	5

Funded by the **European Union**

Contents

Contents

1	Facility Concept 5 1.1 CompactLight FEL 5 1.2 Layout 6 1.3 Tables of Parameters 8
2	Injector92.1 Layout92.2 Radiofrequency92.3 Beam Dynamics92.4 Tables of Parameters10
3	Main Linac113.1 Layout113.2 Bunch Length Compressors113.3 Accelerating Structures123.4 RF Distribution System123.5 Magnetic Lattice143.6 Beam Distribution System153.7 Tables of Parameters17
4	Undulator 19 4.1 Requirements 19 4.2 Technology 20 4.3 Lasing 20 4.4 Tables of Parameters 22
5	Photon Transport 23 5.1 Layout 23

Established at the Helsinki meeting

C-band \rightarrow X-band, + K-band linearizer Velocity bunching

2-stage magnetic compression Twin pulses, bam distribution system for FEL pump-FEL probe

H-SCU + in-vacuum CPMU afterburner

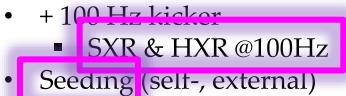
Waiting fo Vitaly G. (informed)

3-4 Dec. 2019, CERN

simone.dimitri@elettra.eu

Funded by the **European Union**

Layout


Baseline:

- Twin bunches (2-colors) •
- KF IN QUAL MODE
 - SXR @250Hz
 - HXR @100Hz
- Variable pol. •

Upgrade-1:

+ RE in dual source SXR @1kHz

Upgrade-2:

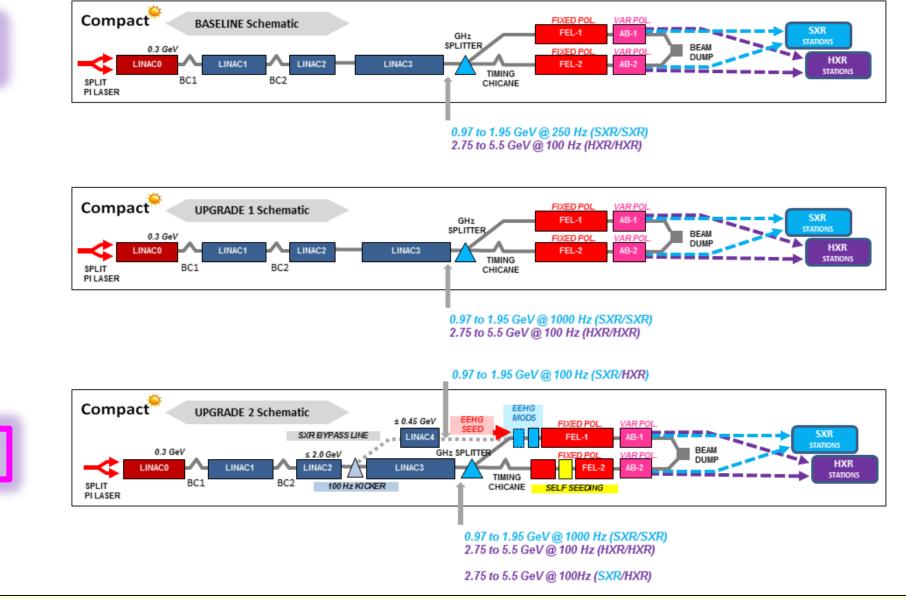


Table 1: Target features of CompactLight FEL. Peak brillinace is in unit of ph/s/mm²/mrad²/0.1%bw(*).

Parameter	Unit	Soft X-ray	Hard X-ray	
Max. repetition rate	kHz	1	0.1	
Photon energy	keV	0.25 - 2.0	2.0 - 16.0	
Wavelength	nm	5.0 - 0.6	0.6 - 0.08	
FEL tuning range at fixed energy		$\times 2$	×2	
Peak brilliance @16 keV	(*)		10 ³³	
Pulse duration	fs	0.1 - 50	1 - 50	
Polarization		variable, selectable		
Two-pulse delay	fs	± 100	± 100	
Two-colour separation	%	20	10	
Synchronization	fs	< 10	< 10	

Table 2: Operating modes of CompactLight FEL. B = baseline; U1 = Upgrade-1; U2 = Upgrade-2; HH = twin hard x-ray pulses; SS = twin soft x-ray pulses.

Operating FEL-1 FEL-2 L0-L1-L2-L3 L3 L4 L4									
Mode	λ-range	λ-range	Rep.Rate [Hz]	Final E [GeV]	Rep.Rate [Hz]	Final E [GeV			
BASELINE									
B-HH HXR HXR 100 2.75-5.5									
B-SS	B-SS SXR SXR 250 0.95-1.95								
B-HH	HXR	HXR	100	2.75-5.5					
			UPGRA	DE-1					
U1-HH	HXR	HXR	100	2.75-5.5					
U1-SS	SXR	SXR	1000	0.95-1.95					
	UPGRADE-2: U1 plus extra mode								
U2-SH	SXR	HXR	100	2.75-5.5	100	0.95-1.95			

Table 11: Photon energy ranges and corresponding discrete electron beam energies at the undulator to cover the whole CompactLight spectral range. A minimum peak brilliance of $10^{33} ph/s/mm^2/mrad^2/0.1\%bw$ is considered. Linear polarization only is assumed.

Parameter	Unit		SXR			HXR	
Repetition rate	kHz	0.1, 0.25, 1			0.1		
Photon energy range	keV	0.25-0.5	0.5-1	1-2	2-4	4-8	8-16
Electron beam energy	GeV	0.97	1.37	1.95	2.75	3.9	5.5
Minimum peak current	kA	0.35	0.65	0.93	1.5	2.5	5
Slice energy spread (RMS)	%	0.05	0.04	0.03	0.02	0.015	0.01
Normalised slice emittance (RMS)	μ m rad	0.2					
Bunch charge	pC	75					

Table 5: Electron beam parameters at undulator entrance.

Parameter	Value
Max. Energy	5.5 GeV @ 100 Hz
Max. Peak Current	5 kA
Norm. Slice Emittance	0.15 µm rad
Bunch charge	< 100 pC
Bunch duration (RMS)	< 50 fs
Slice Rel. Energy Spread	10^{-4}
Max. repetition rate	1 kHz

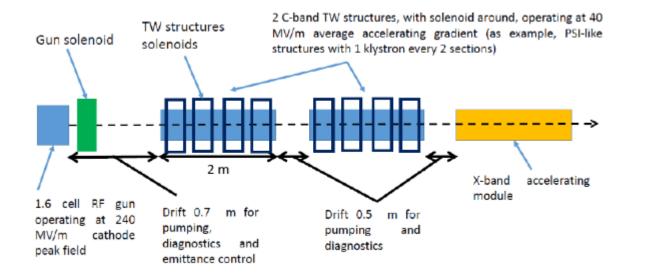


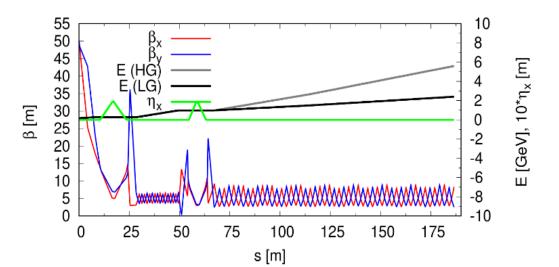
Table 3: Injector beam parameters.

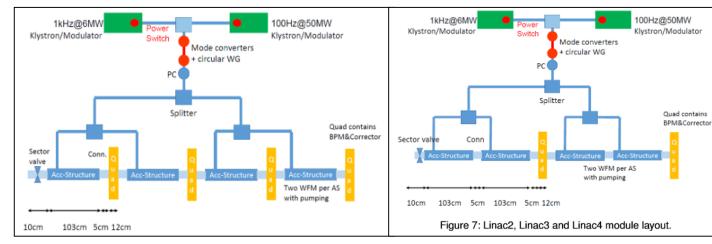
Parameter	At gun exit	At L0 exit	Units
Repetition rate	0.1, 0.	25, 1	kHz
Charge	75	ō	рС
Proj. norm. emittance (RMS)	0.15 (x),	0.15 (y)	μ m rad
Energy	6	280	MeV
Rel. enegry spread (RMS)	0.7	0.5	%
Bunch duration (RMS)	1.2	0.4	ps
Peak current (core)	20	60	A

- **Baseline:** C-band inj. + K-band linearizer
- **Upgrade:** X-band inj. + K-band linearizer

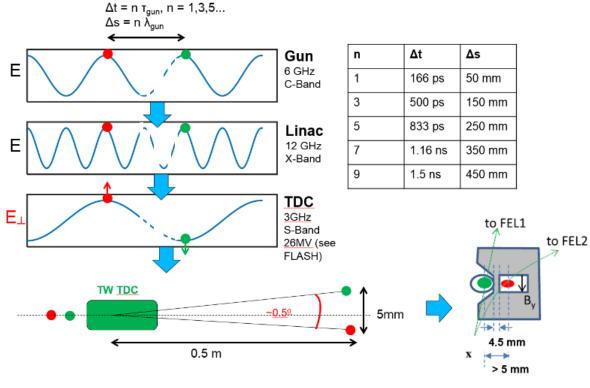
□ Both guarantee 0.1 – 1 kHz rep. rate

□ Transverse emittance at 1 kHz can be relaxed


□ X-band inj. is more compact and utilizes same RF technology of the main linac



- **Baseline:** "dual mode" for 0.1 & 0.25 kHz rep. rate
- **Upgrades:** "dual source" for up to 1 kHz rep. rate
- > 70% RF-to-magnets filling fraction
 <50 µm-quads, <100 µm-RF misalignment errors
 7 m average betatron functions


Parameter	Unit	Dual mode		Dual s	ource	
Operating Mode		В		U1, U2		
Repetition rate	kHz	0.1	0.25	0.1	1	
Linac active length	m	83				
Number of structures		92				
Number of modules		23				
Number of klystrons		23 23 + 23				
Peak acc. gradient	MV/m	65	32	65	30.4	
Energy gain per module	MeV	234	115	234	109	
Max. energy gain	MeV	5382 2649		5382	2507	

- Twin bunches at the injector, separated by
 0.5 ns (e.g., 3 C-band cycles)
- 2. 30 MV S-band **TDC + septum** for splitting at high energy
- 3. High energy **dog-leg**, **20** m x **2.5** m footprint
- 4. High energy chicane (10 m) and at splitand-delay photon beamline for synchronization and fine tuning.

- Alternative schemes include:
 - Twin bunches, 55 MeV S-band linac + septum
 - Single bunch, beam scraping at low energy + septum

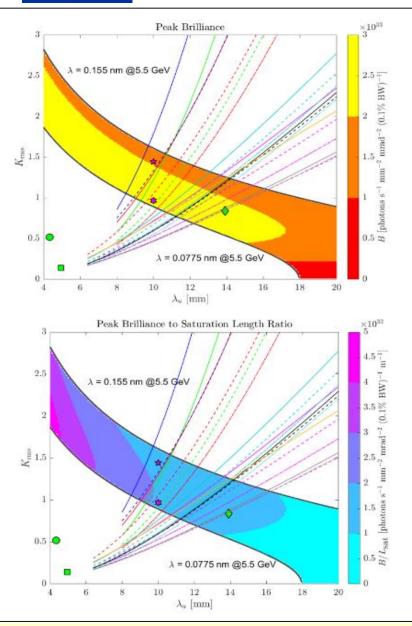


Table 10: Results of GENESIS time-dependent simulations.

Parameter	CPMU	Delta	Hybrid	SCU
Saturation power [GW]	9.1	8.9	7.6	9.8
(pulse average)				
Saturation length [m]	24.5	26.5	29.1	15.6
Sat. pulse energy [µJ]	49	48	29	54
FWHM bandwidth $[10^{-3}]$	0.987	0.975	0.996	1.16
Peak brightness [10^{33} $ imes$	2.39	2.37	1.98	2.18
\times ph/s/mm ² /mrad ² /0.1%bw]				

- Baseline, Upgrade-1: SASE
- **Upgrade-2:** EEHG SXR, self-seeding HXR

□ FEL-1 and FEL-2 are identical

 \square × 2 λ -tuning range at each of the 6 fixed e-beam energies

□ Helical SCU + in-vacuum CPMU afterburner

Next steps

- 1. Finalize the undulator description and tables *Thomas, Neil*
- 2. Include concept and requirements of photon transport *Vitaly*
- 3. Submission to WP1 by Dec. 8
- 4. Submission to EU by Dec. 15