CLD and MDI at FCC-ee

Konrad Elsener, CERN

10 September 2018

CLD ("CLIC-like detector")

CLD detector

(quarter view)

but where are LumiCal, QC1, etc. ??

3 m

LumiCal Design

Mogens Dam, FCC week 2018

LumiCal Design

Mogens Dam, FCC week 2018

Attempt to look in detail

CDR sketch of MDI

Mike Koratzinos

Very simple, no details

Fig. 2.20. A 3D sketch of the interaction region (IR) magnet system in the first 3 m from the interaction point (IP). Zero in the plot marks the location of the IP).

E. Levichev, FCC week 2019

CDR sketch of MDI

Mike Koratzinos

Very simple, no details

Is this the official overall length of QC1?

(N.B. QC2 is outside of the detector)

E.m. calorimetry at CLD - forward angle coverage

ECAL endcap coverage		LumiCal coverage
nominal ("old") (use centre of ECAL endcap inner face)	proposal Sept. 2019	
> 142 mrad	> 108 mrad	< 82 mrad (w.r.t CLD detector axis)

BIG QUESTION:

Opening and closing the detector (construction / maintenance)

(here some information from CLIC)

Parenthesis: the situation at CLIC (summary report 2018)

Parenthesis: the situation at CLIC (CLICdp-Note-2017-001)

11 Detector Opening and Maintenance

The preliminary procedure for detector opening and maintenance, as outlined in the CDR, can be applied to CLICdet with minor changes. The main steps are:

- close all beam pipe vacuum valves, vent the beam pipe in the detector region with a dry gas (e.g. nitrogen);
- open the vacuum on the detector-side of QD0, close the detector vacuum system by flanges;
- move the detector from the IP to the garage position in the cavern;
- the support tube installation/extraction tool is installed behind the endcap;
- the jacks holding the support tube in position are retracted;
- the endcap is slid back, giving access to the vacuum connection between forward region and central detector;
- open vacuum connection near LumiCal, remove bellows as shown in Figure 33;
- LumiCal is opened sideways, and the support tube can be retracted some 50 cm by the extraction tool;
- close the vacuum system on all sides by flanges;
- remove the support tube as a whole by a crane;

Parenthesis: the situation at CLIC (summary report 2018)

Fig. 11.21: Opening LumiCal and ECAL plug for the passage of the valve.

Fig. 11.22: Retraction of the support tube.

Fig. 11.23: Final removal of the support tube by crane.

NB. For access to the tracker + vertex both end-caps need to be opened!

can something like this work for CLD?

Alternative proposal by Novosibirsk ->

Proposal by BINP: install "everything" (both sides) of MDI + vertex on one girder, diameter needed: 500 mm

-> completely pushed through from one side !

FEASIBLE ?? IMPOSSIBLE ?? -- complete re-design of inner tracker+ VTX needed

As usual:

more questions than answers...

but THANK YOU anyway, for your attention

<u>SMARTEAM code for CLD CATIA drawings:</u> ST0874948 (THANKS to Nicolas Siegrist – CMS)

Thanks to Emilia, Sasha, Yorgos, etc. for their many contributions!

backup slides

Parenthesis: the situation at CLIC (CLICdp-Note-2017-001)

Figure 33: Removal of the bellows downstream of LumiCal.

Sub-assembly #1

Final assembly

Final assembly

