Linac 4 ion source continuous caesiation results

180th Machine Protection Panel Meeting, Continuous caesiation at Linac 4 CERN, 30.08.2019

• Linac 4 test stand configuration

- o Layout
- Cs injection system
- $\circ \quad \text{RFQ acceptance mask device} \\$
- Experimental program
- First continuous caesiation results
- Surface analysis of masks and samples
- Summary, Conclusion

Acknowledgements Michael O'Neil, Sebastien Bertolo, Detlef Küchler, Daniel Noll Mauro Taborelli, Colette Charvet, Marcel Himmerlich, Ana Teresa Perez Fontenla

Linac 4 test stand configuration

Caesium injection system

E. Mahner, CERN, 30.08.2019

RFQ acceptance mask device

Setup

Four so-called **"RFQ masks"** with central holes installed Configuration: C-B-B-A (in beam direction) Square hole sizes: 10.4 / 4.34 / 4.34 / 9.8 mm

Preparations

- Fabrication of 4 new Cu masks + 18 samples
- Cleaning of entire setup (chamber, masks, samples...)
- Installation of samples on the first mask (front/backside)
- Continuous caesiation beam test for 5 weeks
- Surface analysis of masks and samples afterwards

E. Mahner, CERN, 30.08.2019

Experimental program

• Objective

- Test of the new continuos caesiation system for Linac 4 ion sources
- Check for traces of Cs at the RFQ acceptance mask device
- If possible, achieve a low e⁻/H⁻ ratio with minimal amount of Cs injected
 - The higher the e⁻/H⁻ ratio, the higher the emittance at given beam current
- If possible, obtain long term stability of a low e⁻/H⁻ ratio
- Test for a period as long as possible: 13.05.-16.06.2019
- H⁻ ion source
 - IS 03c: cleaned, equipped with new plasma chamber
 - Cs injection system: new, cleaned
 - RFQ acceptance mask device: dismantled, cleaned, equipped with new Cu masks
- Parameter
 - Temperature settings for the Cs reservoir, valves, and transfer line
- Observables
 - O H[−] current
 - \circ e⁻/H⁻ ratio
- Unchanged settings
 - o RF power
 - o Gas injection
 - Source extraction voltages
 - LEBT, e.g. solenoid currents, gas injection, corrector magnets

First Linac 4 continuous caesiation results

First Linac 4 continuous caesiation results

First Linac 4 continuous caesiation results

E. Mahner, CERN, 30.08.2019

First Linac 4 continuous caesiation results

Linac 4 test stand RFQ masks after continuous caesiation

Linac 4 test stand RFQ masks after continuous caesiation

Surface analysis of masks and samples

Surface analysis of masks and samples

X-ray fluorescence (XRF), portable X-ray photoemission spectroscopy (XPS) X-ray **Surface analysis techniques** source e- energy M. Taborelli (TE-VSC) 1.2/1.4 keV analyzer X-ray source X-ray detector 50kV and energy analyser air hυ hυ electron detector sample UHV Elemental surface composition sample Sampling of about microns in depth

- Collecting Cs from a large surface (~170cm²) and reconcentrating on the probed spot gives a detection limit of 0.003 µg/cm² for water soluble Cs (the oxide is soluble)
- (NB: 0.1 µg/cm² is about one atomic layer)

Energy Dispersive X-ray analysis (EDX) in SEM

HV

X-ray detector and energy analyser

E. Mahner, CERN, 30.08.2019

Electron gun (SEM source) 10-20kV

- Elemental surface composition
- Sampling of about 1 µm in depth, < 1 µm area
- For Cs 1 µg/cm² estimated detection limit

- Elemental surface composition and some chemical bonds
- Sampling of about 2nm in depth, 1-2 mm²
- Detection limit 0.02 µg/cm² Cs (layer on top of copper)

XRF results

- Samples removed from mask 1
- all 4 masks analysed
- front (A) and back (B) side measured

Pièce	Masse de césium extraite / µg
Masque 1A	< 0.05
Masque 1B	< 0.05
Masque 2A	< 0.05
Masque 2B	< 0.05
Masque 3A	< 0.05
Masque 3B	< 0.05
Masque 4A	< 0.05
Masque 4B	< 0.05

C. Charvet (TE-VSC), EDMS 2210969

No evidence of Cs found on any of the four copper mask surfaces, within the XRF detection limit of 3 x $10^{-3} \mu g/cm^2$ 1 ML = $10^{-1} \mu g/cm^2 \rightarrow 0.03$ ML detect. limit

- **Measurements** were performed **on two spots of each sample** (see previous slide)
- The survey spectra (FIG.1) indicate the main lines detected, which correspond to Cu, O, and C.

M. Himmerlich (TE-VSC), EDMS 2214379

- Slightly **different colour shading** for the **two regions** of samples 1 and 2 observed
- The colour difference **correlates with the shape of the Cu2p state** shown in Fig. 2 and points to **differences in oxidation**. This could be related to the dose from the experiment that the different regions were exposed to.

FIG. 3. XPS spectra around the Cs3d line

- For Cs analysis, the spectrometer was operated at highest possible sensitivity, i.e. large pass energy of 150 eV and long integration time. FIG. 3 includes the related spectra.
- No signal within the binding energy region of possible Cs compounds (indicated by red dotted line) was detected.

Summary

- First long-term test of the new CERN Linac 4 ion source continuous caesiation system, performed during 5 weeks at the test stand, all objectives achieved.
- Successful test and demonstration of the reliability, the operational robustness, and readiness of the new Cs system, which was designed, built, commissioned, and operated by ABP-HSL (M. O'Neil).
- $e^{-}/H^{-} = 0.50 \pm 0.15$ achieved during the last 3 test weeks, using a (very) low Cs temperature of T_{Cs} (reservoir) = 70 ± 10 °C. No interim caesiation was necessary.
- Various applied surface analysis techniques (XRF, XPS) revealed no trace of caesium on the RFQ acceptance masks and samples, within a very low detection limit of down to 0.003 μg/cm², which corresponds to 0.03 ML.

Summary ion source comparison (1/2)

Status August 2019	CERN	J-PARC	ORNL
H ⁻ source type	RF	RF	RF
Caesiation method	continuous	not continuous, very frequent (with beam) 45 s each 70 min	not continuous, once per ~100 day long run
Cs oven fill	5 g, 2 g, 1 g (options)	3 g	30 mg Cs in Cs collar as Cs ₂ CrO ₄
Cs system temperatures	oven: 70 ± 10 $^{\circ}$ C valve: 90 ± 10 $^{\circ}$ C tube: 90 ± 10 $^{\circ}$ C	oven: 180 $^{\circ}\mathrm{C}$ valve: 240 $^{\circ}\mathrm{C}$ tube: 300 $^{\circ}\mathrm{C}$	Normally ~200 °C and raised to 550 $^\circ\!\mathrm{C}$ for ~12 min to activate St101 getter
Cs consumption	12 mg/5 weeks 0.125 g/year no measurements, estimated values	43.7 μg/70 min 0.328 g/year no measurements, estimated values	~40 mg/year including Cs for frontend R&D
Valve between Cs oven and ion source	1 motorized + 1 manual valve. Opened/closed remotely	pneumatic valve Opened/closed remotely by compressed air on/off	not applicable because Cs collar is an integral part of the ion source
Measures to protect the linac against Cs	Cs heater system design	Cs 852 nm spectrum observation	gate valve next to RFQ is closed during caesiations
Observed issues with beamline, RFQ	no records yet	no issue in the beam line and/or RFQ observed	arcing problems resolved after introducing a 3-hour wait between caesiation and applying high voltages
Source-RFQ distance	1.955 m	0.64 m	0.1 m

All numbers and information kindly provided in July/August 2019 by A. Ueno (J-PARC), M. Stockli (ORNL)

Summary ion source comparison (2/2)

Status August 2019	BNL	FNAL	RAL
H ⁻ source type	Magnetron	Magnetron	Penning
Caesiation method	continuous	continuous	continuous
Cs oven fill	5 g	5 g	5 g
Cs system temperatures	oven: 125-130 $^\circ\!\mathrm{C}$ (8h) then 90-110 $^\circ\!\mathrm{C}$ valve, tube: 300 $^\circ\!\mathrm{C}$	oven: 110 $^{\circ}$ C valve: 200 $^{\circ}$ C tube: 200 $^{\circ}$ C	oven: 155-170 $^\circ\!\mathrm{C}$ tube: 300 $^\circ\!\mathrm{C}$
Cs consumption	0.5 mg/h 4.38 g/year measured by left over	< 5 g/600 d < 3.0 g/year no measurements, 600 d based on experience, weighing oven foreseen	3 g/month 36 g/year
Valve between Cs oven and ion source	manual valve Opened/closed only for source start/removal	manual valve Only time that they need to close that is when they let up the vacuum and remove the ion source	no valve Transport line as short as possible, could collect Cs and get blocked
Measures to protect the linac against Cs	none; LEBT with 45 degree bend	no method of trapping cesium coming out of the source	90 degree dipole, cold box
Observed issues with beamline, RFQ	never had any issues with Cs in RFQ	no issues with cesium in RFQ or HV element in LEBT	no problem with beamline in 35 years
Source-RFQ distance	2 m	1.2 m	1.5 m

All numbers and information kindly provided in July/August 2019 by by D. Raparia (BNL), D. Bollinger (FNAL), D. Faircloth (RAL)

Conclusion

- The designed, built, and commissioned caesiation system has successfully passed a 5 weeks testing period where it demonstrated its aptitude, reliability, and robustness to be deployed for systematic Linac 4 tests and long-term operation.
- Observations at various accelerator labs, where no beamline and/or RFQ issues have been reported, support the chosen Linac 4 approach and todays proposal.
- Based on the Linac 4 H⁻ ion source continuous caesiation tests, performed between 13 May and 16 June 2019 at the Linac 4 test stand, and taking into account the presented results at todays MPP meeting, the ABP group suggests a formal MPP recommendation to employ continuous caesiation under operational beam conditions (no valves closed) starting with the next Linac 4 (LBE) run in September 2019.
- Effect(s) of long-term (months, years) continuous caesiations of the Linac 4 ion source and any potential impact on machine performance and/or reliability can neither be predicted nor excluded.

Spares

Comparison of Cs consumptions

Cs mass [mg] calculated

FIG. 2. SEM images of the roughness heterogeneities depending on the area at 50 x, 200 x, 1 kx, and 5 kx

In all the samples, the **surface areas around the hole** present **roughness heterogeneities** (most 0 probably depending if they were higher or lower affected by the beam interaction). Representative images are displayed on FIG. 2. E. Mahner, CERN, 30.08.2019 27

FIG. 3. SEM images (Cu #1, tilted 30°) of the observed hillocks around the square hole at 50 x, 200 x, 1 kx, and 5 kx

• Apart from the surface roughness, **some regions** of samples (Cu #1,2,3) **present hillocks** o few microns diameter, with higher density closer to the square (see FIG. 3).

FIG. 4. SEM images (Cu #1) of the observed hillocks around the square hole at 1 kx

 It was noticed that those features (hillocks) have a preferential location on the grain boundaries and their presence is more numerous in some grains (maybe related to crystallographic orientation) as shown in FIG. 4.

FIG. 5a. Comparison of SEM images at the edges of the holes in the two copper samples (Cu #1, Cu #2) at 200 x and 1 kx

• For all samples, the edges of the square holes presented splashes of molten material, see FIG. 5a

FIG. 5b. Comparison of SEM images at the edges of the holes in the two copper samples (Cu #3, Cu #4) at 200 x and 1 kx

• For all samples, the edges of the square holes presented splashes of molten material, see FIG. 5b