The Silicon Vertex Detector of the Belle II Experiment

Thomas Bergauer (HEPHY Vienna)
Introduction
Belle II: The Future
Double Sided Sensors
SVD-II Components
Readout System
Summary
KEKB and Belle @ KEK

- **Asymmetric** machine: 8 GeV e^- on 3.5 GeV e^+
- Center of mass **energy**: $Y(4S)$ (10.58 GeV)
- **High intensity** beams (1.6 A & 1.3 A)
- Integrated luminosity 1 ab$^{-1}$ recorded by end of 2009

About 60km northeast of Tokyo

~1 km in diameter

Mt. Tsukuba

KEKB

Belle

Linac
The Silicon Vertex Detector
of the Belle II Experiment

µ / K

14/15 lyr. RPC+Fe

CsI(Tl)

Si vertex detector

4 lyr. DSSD

SC solenoid 1.5 T

8 GeV e−

3.5 GeV e+ + Aerogel Cherenkov counter

n=1.015~1.030

Central Drift Chamber small cell +He/C

TOF counter

T. Bergauer
The Present SVD – Overview

- **4 layers** (6/12/18/18 ladders), $r = 2.0 \ldots 8.8$ cm
- **17°…150°** polar angle coverage
- **246 double sided** silicon detectors (DSSDs), 0.5 m^2 overall active area
- **VA1TA** readout chip (Viking variant; 800ns shaping time)
- **110592** channels in total
Introduction

Belle II: The Future

Double Sided Sensors

SVD-II Components

Readout System

Summary
KEKB/Belle upgrade (2010–2014)

- Aim: super-high luminosity $\sim 8 \times 10^{35} \text{cm}^{-2}\text{s}^{-1} \rightarrow 1 \times 10^{10} \text{B} \bar{\text{B}} / \text{year}$
- LoI published in 2004; TDR was written in spring this year and is presently under review
- Refurbishment of accelerator and detector required

http://belle2.kek.jp
Belle II SVD Upgrade (2010–2014)

- Ultimately **40-fold increase in luminosity** (~8×10^{35} cm$^{-2}$s$^{-1}$)
- Present SVD limitations are
 - **occupancy** (currently ~10% in innermost layer) → need faster shaping
 - **dead time** (currently ~3%) → need faster readout and pipeline
- Needs Detector with
 - high **background tolerance**
 - **pipelined** readout
 - **robust tracking**
 - **low material budget** in active volume (low energy machine)
- Ultimately **40-fold increase in luminosity** (~8×10^{35} cm$^{-2}$s$^{-1}$)
- Present SVD limitations are
 - **occupancy** (currently ~10% in innermost layer) → need faster shaping
 - **dead time** (currently ~3%) → need faster readout and pipeline
- Needs Detector with
 - high **background tolerance**
 - **pipelined** readout
 - **robust tracking**
 - **low material budget** in active volume (low energy machine)

Current SVD is not suitable for Belle II

10 June 2010 T. Bergauer
The Silicon Vertex Detector
of the Belle II Experiment

Present SVD Layout (until 2010)

- 4 straight layers of 4" double-sided silicon detectors (DSSDs)
- Outer radius of r~8.8 cm
- Up to 3 sensors are ganged and read out by one hybrid located outside of acceptance
• Geometry optimization is underway
• New central pixel double-layer using **DEPFET**
• Strip layers extend to *r*~14 cm
• Every sensor is **read out individually** (no ganging) to maintain good S/N
 → chip-on-sensor concept
Introduction
Belle II: The Future
Double sided Sensors
SVD-II Components
Readout System
Summary
Vendors for 6” DSSD

• Aim is to use double sided silicon detectors with AC-coupled readout and poly-silicon resistor biasing from 6 inch wafer.

• Hamamatsu decided in the past to abandon the production of double sided sensors.

• Thus, negotiations with Canberra, SINTEF and Micron started.

• Finally HPK could be convinced to restart DSSD production on 6” wafers.

• 6” prototypes ordered from
 – Hamamatsu (rectangular): First batch delivered in April
 – Micron (trapezoidal): First batch in July.
The Silicon Vertex Detector of the Belle II Experiment

SVD Layout

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>17</td>
<td>0</td>
<td>68</td>
<td>17</td>
<td>850</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>0</td>
<td>42</td>
<td>14</td>
<td>560</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>0</td>
<td>20</td>
<td>10</td>
<td>300</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>192</td>
</tr>
<tr>
<td>Sum:</td>
<td>49</td>
<td>16</td>
<td>130</td>
<td>41</td>
<td>1902</td>
</tr>
</tbody>
</table>

Thomas Bergauer (HEPHY Vienna)

First batch from HPK

- First 20 pieces of 6” sensors have been delivered in April 2010
- Technical details:
 - Dimensions: 59.6 x 124.88 mm
 - p-side:
 - Readout pitch: 75 µm
 - 768 strips
 - n-side:
 - Readout pitch: 240 µm
 - 512 readout strips n-side
 - P-stop scheme

10 June 2010

T. Bergauer
First Batch of 6” DSSD from HPK

• Electrical Characterization
 – IV, CV
 – Stripscan (p- and n-side)
 – Longterm stability vs. temperature and humidity
 – Inter-strip resistance and capacitance currently under investigation

• Pull-tests to show bondability ok
Trapezoidal Sensors (Micron)

- Full wafer designed using self-developed framework
- Including test structures and mini sensors to test different p-stop designs
- Delivery due July 2010

Sensor “programming language”

// Sensor
extern SensorPitch=50;
extern SensorSizeX=100000;
extern SensorSizeY=100000;
extern SensorCutMargin=100;
extern SensorGuardSpacing=50;
extern SensorGuardBiasSpacing=100;
extern SensorBiasStripSpacing=50;

// GuardRing
extern GuardNRings=10;
extern GuardWidth=100;
extern GuardCornerRadius=30;
extern GuardCornerPoints=20;

// BiasRing
extern BiasWidth=100;
extern BiasCornerRadius=30;
Introduction
Belle II: The Future
Double Sided Sensors
SVD-II Components
Readout System
Summary
APV25 Readout Chip

- Developed for **CMS** (LHC) by IC London and RAL (70k chips installed)
- 0.25 µm CMOS process (>100 MRad tolerant)
- **40 MHz clock** (adjustable), 128 channels
- **192 cell analog pipeline** → no dead time
- **50 ns shaping time** → low occupancy
- **Noise**: 250 e + 36 e/pF → must minimize capacitive load!!!
- **Multi-peak mode** (read out several samples along shaping curve)
- **Thinning** to 100µm successful
APV25 – Hit Time Reconstruction

- Possibility of recording **multiple samples** (x) along shaped waveform (feature of APV25)

- Reconstruction of **peak time** (and amplitude) by waveform fit

- Will be used to **remove off-time background** hits
Occupancy Reduction

- VA1TA
 - $T_p \approx 800\text{ns}$
 - Time over threshold $\sim 2000\text{ns}$ (measured)

- APV25
 - $T_p \approx 50\text{ns}$
 - Time over threshold $\sim 160\text{ns}$ (measured)
 - Gain ~ 12.5
 - Gain ~ 8
 - Total gain ~ 100

- Pulse shape processing
 - RMS (t_{max}) $\sim 3\text{ns}$

- Sensitive time window $\sim 20\text{ns}$
Origami – Chip-on-Sensor Concept

- **Chip-on-sensor** concept for **double-sided readout**
- **Flex fan-out** pieces **wrapped** to opposite side (hence “Origami“)
- All chips aligned on one side → **single cooling pipe**

Prototype for 4” DSSD (later with 6” sensors)
First Origami Module (2009)

- Top and bottom side Origami concept (4” sensor)
- Prototype completed in August 2009
- Successfully evaluated in lab and beam tests
- Currently building module based on 6” sensor
Second Origami Module (2010)

- Now using new 6 inch sensors
- Kapton PCB and pitch-adapters ordered by Japanese company
 - Currently under test in Vienna
- Followed by complicated assembly procedure
Sketch of the Outermost Ladder (Layer 6)

- Composed of 5 x 6” double-sided sensors
- Center sensors have Origami structure
- Border sensors are conventionally read out from sides
Ladder Mechanics (preliminary)

- Carried by ribs made of carbon fiber and Rohacell
- Averaged material budget: 0.58% X_0
- Cooling options under study
 - Conventional liquid cooling
 - CO_2 cooling
The Silicon Vertex Detector of the Belle II Experiment

Introduction
Belle II: The Future
Double Sided Sensors
SVD-II Components
Readout System
Summary
The Silicon Vertex Detector of the Belle II Experiment

Readout System

- Prototype **readout system exists**
- **Verified** in several **beam tests**
- Basis for future SVD system shown below

1902 APV25 chips

~2m copper cable

Junction box

~10m copper cable

FADC+PROC

Unified optical data link (>20m)

Finesse Transmitter Board (FTB)

Front-end hybrids

Rad-hard voltage regulators

Analog level translation, data sparsification and hit time reconstruction

Unified Belle II DAQ system
Prototype Readout System

Repeater Box
Level translation, buffering

FADC+PROC (9U VME)
Digitization, zero-suppression, hit time reconstruction
Beam Tests

KEK (Apr 2005)

KEK (Nov 2007, Nov 2008)

CERN (June 2008, September 2009)
Introduction
Belle II: The Future
Double Sided Sensors
SVD-II Components
Readout System
Summary
Summary

- **KEKB** is the **highest luminosity** machine in the world
- **Upgrade** of KEKB and Belle (2010-2014)
 - 40-fold increase in **luminosity**
 - Needs upgrades of all subdetectors
- New, enlarged **Silicon Vertex Detector**
 - **DEPFET** pixel double-layer
 - Four **strip** layers
- **Strip Detector R&D**
 - **New 6” Double Sided Strip Detectors** by HPK
 - **Origami** chip-on-sensor concept for low-mass DSSD readout
 - Readout with **hit time reconstruction** for improved background tolerance (up to 100x occupancy reduction w.r.t. now)
Beam Parameters

<table>
<thead>
<tr>
<th></th>
<th>KEKB Design</th>
<th>KEKB Achieved: with crab</th>
<th>SuperKEKB High-Current</th>
<th>SuperKEKB Nano-Beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (GeV) (LER/HER)</td>
<td>3.5/8.0</td>
<td>3.5/8.0</td>
<td>3.5/8.0</td>
<td>4.0/7.0</td>
</tr>
<tr>
<td>(\beta_y^*) (mm)</td>
<td>10/10</td>
<td>5.9/5.9</td>
<td>3/6</td>
<td>0.27/0.42</td>
</tr>
<tr>
<td>(\varepsilon_x) (nm)</td>
<td>18/18</td>
<td>18/24</td>
<td>24/18</td>
<td>3.2/2.4</td>
</tr>
<tr>
<td>(\sigma_y) (\mu m)</td>
<td>1.9</td>
<td>0.94</td>
<td>0.85/0.73</td>
<td>0.059</td>
</tr>
<tr>
<td>(\xi_y)</td>
<td>0.052</td>
<td>0.129/0.090</td>
<td>0.3/0.51</td>
<td>0.09/0.09</td>
</tr>
<tr>
<td>(\sigma_z) (mm)</td>
<td>4</td>
<td>\sim 6</td>
<td>5/3</td>
<td>6/5</td>
</tr>
<tr>
<td>(I_{\text{beam}}) (A)</td>
<td>2.6/1.1</td>
<td>1.64/1.19</td>
<td>9.4/4.1</td>
<td>3.6/2.6</td>
</tr>
<tr>
<td>(N_{\text{bunches}})</td>
<td>5000</td>
<td>1584</td>
<td>5000</td>
<td>2503</td>
</tr>
<tr>
<td>Luminosity ((10^{34} \text{ cm}^{-2} \text{ s}^{-1}))</td>
<td>1</td>
<td>2.11</td>
<td>53</td>
<td>80</td>
</tr>
</tbody>
</table>
KEKB accelerator upgrade

- Crab cavity
- 8 GeV e^-
- New IR with crab crossing and smaller β_y^*
- New beam-pipes with ante-chamber
- More RF for higher beam current
- Damping ring for e^+

KEKB accelerator upgrade
The Silicon Vertex Detector of the Belle II Experiment

Faster calorimeter with waveform sampling and pure CsI (endcap)

New particle identifier with precise Cherenkov device: (i)TOP or fDIRC. Endcap: Aerogel RICH

Background tolerant super small cell tracking detector

Si vertex detector with high background tolerance (+2 layers, pixels)

KL/µ detection with scintillator and next generation photon sensors

New dead-time-free pipelined readout and high speed computing systems

10 June 2010 T. Bergauer
The Silicon Vertex Detector of the Belle II Experiment

Micron Wafer Layout

- Quadratic baby sensors 2, 3, 4
 - p-side: 512 strips
 - 50 µm pitch
 - 1 interm. strip
 - n-side: 256 strips
 - 100 µm pitch
 - 0 interm. strip
 - different p-stop patterns

- Baby sensor 1
 - p-side: 512 strips
 - 50 µm pitch
 - 1 interm. strip
 - n-side: 512 strips
 - 100 µm pitch
 - 1 interm. strip
 - atoll p-stop

- Main sensor
 - p-side: 768 strips
 - 75-50 µm pitch
 - 1 interm. strip
 - n-side: 512 strips
 - 240 µm pitch
 - 1 interm. strip
 - combined p-stop

- Baby sensor 2, 3, 4
 - p-side: 512 strips
 - 50 µm pitch
 - 1 interm. strip
 - n-side: 256 strips
 - 100 µm pitch
 - 0 interm. strip
 - different p-stop patterns

 1) atoll p-stop
 varying distance from strip
 2) conventional p-stop
 varying width
 3) combined p-stop
 varying distance from strip

3 different GCDs for the n-side

Teststructures for p-side

Teststructures for n-side (no GCD)

Micron: p-stop layout

- p-stops connected
- p-stops isolated
- combined
Current Barrel Layout

<table>
<thead>
<tr>
<th>Layer</th>
<th>Sensors/Ladder</th>
<th>Origamis/Ladder</th>
<th>Ladders</th>
<th>Length [mm]</th>
<th>Radius [mm]</th>
<th>Slant Angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>7/8</td>
<td>262</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>390</td>
<td>80</td>
<td>11.9</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>2</td>
<td>14</td>
<td>515</td>
<td>115</td>
<td>17.2</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>3</td>
<td>17</td>
<td>645</td>
<td>140</td>
<td>21.1</td>
</tr>
</tbody>
</table>

- **Origami**
- **Cooling Tubes**
- **Slanted Sensors**
- **Hybrid Boards**
Comparison VA1TA – APV25

VA1TA (SVD)
- Commercial product (IDEAS)
- $T_p = 800\,\text{ns} \ (300 \,\text{ns} - 1000 \,\text{ns})$
- no pipeline
- $<10 \,\text{MHz}$ readout
- 20 Mrad radiation tolerance
- noise: $\text{ENC} = 180 \,\text{e} + 7.5 \,\text{e/pF}$
- time over threshold: $\sim 2000 \,\text{ns}$
- single sample per trigger

APV25 (Belle-II SVD)
- Developed for CMS by IC London and RAL
- $T_p = 50 \,\text{ns} \ (30 \,\text{ns} - 200 \,\text{ns})$
- 192 cells analog pipeline
- $40 \,\text{MHz}$ readout
- $>100 \,\text{Mrad}$ radiation tolerance
- noise: $\text{ENC} = 250 \,\text{e} + 36 \,\text{e/pF}$
- time over threshold: $\sim 160 \,\text{ns}$
- multiple samples per trigger possible (Multi-Peak-Mode)
Measured Hit Time Precision

- Results achieved in **beam tests** with several different types of Belle DSSD prototype modules (covering a broad range of SNR).

- **2...3 ns RMS** accuracy at typical cluster SNR (15...25)

- Working on implementation in **FPGA** (using lookup tables) – simulation successful.

![Time Resolution vs. Cluster SNR](image)
Origami Material Budget

X₀ comparison between conventional and chip-on-sensor (4” sensors):

Conventional (double layer kapton)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Material</th>
<th>X₀ (mm)</th>
<th>Thickness (mm)</th>
<th>Percentage</th>
<th>Area coverage</th>
<th>Averaged Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor</td>
<td>Silicon</td>
<td>93.7</td>
<td>0.3</td>
<td>0.32%</td>
<td>100.0%</td>
<td>0.320%</td>
</tr>
<tr>
<td>Fanout</td>
<td>Polyimide (2 layer of 50um each)</td>
<td>300.0</td>
<td>0.1</td>
<td>0.03%</td>
<td>96.3%</td>
<td>0.032%</td>
</tr>
<tr>
<td>Copper</td>
<td>(10um)</td>
<td>14.0</td>
<td>0.01</td>
<td>0.07%</td>
<td>50.0%</td>
<td>0.036%</td>
</tr>
<tr>
<td>Nickel</td>
<td>(top: 1.3um)</td>
<td>14.3</td>
<td>0.0013</td>
<td>0.01%</td>
<td>50.0%</td>
<td>0.005%</td>
</tr>
<tr>
<td>Gold</td>
<td>(top: 0.8um)</td>
<td>3.4</td>
<td>0.0006</td>
<td>0.02%</td>
<td>50.0%</td>
<td>0.012%</td>
</tr>
<tr>
<td>Ribs</td>
<td>Zylon (0.5mm wide)</td>
<td>300.0</td>
<td>5</td>
<td>1.67%</td>
<td>3.7%</td>
<td>0.062%</td>
</tr>
<tr>
<td>Glue</td>
<td>Araldite 2011 / Double sided tape</td>
<td>335.0</td>
<td>0.05</td>
<td>0.01%</td>
<td>96.3%</td>
<td>0.014%</td>
</tr>
</tbody>
</table>

Total 0.480%

DSSD Chip-on-Sensor (4-layer kapton)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Material</th>
<th>X₀ (mm)</th>
<th>Thickness (mm)</th>
<th>Percentage</th>
<th>Area coverage</th>
<th>Averaged Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor</td>
<td>Silicon</td>
<td>93.7</td>
<td>0.3</td>
<td>0.32%</td>
<td>100.0%</td>
<td>0.320%</td>
</tr>
<tr>
<td>Isolation</td>
<td>Rohacell (Degussa)</td>
<td>5450.0</td>
<td>1</td>
<td>0.02%</td>
<td>96.3%</td>
<td>0.018%</td>
</tr>
<tr>
<td>Hybrid</td>
<td>Polyimide (4 layers of 50um each)</td>
<td>300.0</td>
<td>0.2</td>
<td>0.07%</td>
<td>96.3%</td>
<td>0.064%</td>
</tr>
<tr>
<td>Copper</td>
<td>(4 layers of 5um each)</td>
<td>14.0</td>
<td>0.02</td>
<td>0.14%</td>
<td>64.7%</td>
<td>0.092%</td>
</tr>
<tr>
<td>Nickel</td>
<td>(top: 1.3um)</td>
<td>14.3</td>
<td>0.0013</td>
<td>0.01%</td>
<td>64.7%</td>
<td>0.006%</td>
</tr>
<tr>
<td>Flash Gold</td>
<td>(top: 0.4um)</td>
<td>3.4</td>
<td>0.0004</td>
<td>0.01%</td>
<td>64.7%</td>
<td>0.008%</td>
</tr>
<tr>
<td>Flexes</td>
<td>Polyimide (1 layer of 25um)</td>
<td>300.0</td>
<td>0.025</td>
<td>0.01%</td>
<td>56.3%</td>
<td>0.005%</td>
</tr>
<tr>
<td>Copper</td>
<td>(1 layer of 5um)</td>
<td>14.0</td>
<td>0.005</td>
<td>0.04%</td>
<td>28.1%</td>
<td>0.010%</td>
</tr>
<tr>
<td>Nickel</td>
<td>(top: 1.3um)</td>
<td>14.3</td>
<td>0.0013</td>
<td>0.01%</td>
<td>28.1%</td>
<td>0.003%</td>
</tr>
<tr>
<td>Flash Gold</td>
<td>(top: 0.4um)</td>
<td>3.4</td>
<td>0.0004</td>
<td>0.01%</td>
<td>28.1%</td>
<td>0.003%</td>
</tr>
<tr>
<td>8 * APV25</td>
<td>Silicon</td>
<td>93.7</td>
<td>0.1</td>
<td>0.11%</td>
<td>21.4%</td>
<td>0.023%</td>
</tr>
<tr>
<td>SMDs</td>
<td>SMD</td>
<td>50.0</td>
<td>0.4</td>
<td>0.80%</td>
<td>8.0%</td>
<td>0.007%</td>
</tr>
<tr>
<td>Si-Pad</td>
<td>Si-Pad 800 (Bergquist)</td>
<td>200.0</td>
<td>0.127</td>
<td>0.06%</td>
<td>11%</td>
<td>0.007%</td>
</tr>
<tr>
<td>Pipe</td>
<td>Aluminum (D=2.0mm, wall=0.2mm)</td>
<td>89.0</td>
<td>0.56</td>
<td>0.63%</td>
<td>7%</td>
<td>0.047%</td>
</tr>
<tr>
<td>Rib</td>
<td>Zylon (0.5mm wide)</td>
<td>300.0</td>
<td>5</td>
<td>1.67%</td>
<td>1.9%</td>
<td>0.031%</td>
</tr>
<tr>
<td>Glue</td>
<td>Araldite 2011</td>
<td>335.0</td>
<td>0.2</td>
<td>0.06%</td>
<td>50%</td>
<td>0.030%</td>
</tr>
<tr>
<td>Cooling</td>
<td>Water</td>
<td>360.5</td>
<td>1.26</td>
<td>0.35%</td>
<td>13%</td>
<td>0.047%</td>
</tr>
</tbody>
</table>

Total 0.719%

- **+50%** increase in material, but also **huge** improvement in SNR
- **Trade-off** between material budget and SNR
- According to simulation, additional material is prohibitive in 2 innermost layers, but **no problem for layers 3-5** → OK with layout
Maximum Radiation Length Distribution

![Graph showing radiation length distribution for different materials.]

- **Profile [mm]**
- **Radiation Length [%]**
- **Rib Design**

Materials:
- CFRP
- Rohacell
- Pipe
- Coolant
- APV
- Kapton
- Sensor
- Rohacell

10 June 2010

T. Bergauer
Cooling Boundary Conditions

- Power dissipation/APV: 0.4 W
- 1 Origami sensor features 10 APVs

<table>
<thead>
<tr>
<th>Origamis/Ladder</th>
<th>Ladders</th>
<th>APVs Origami</th>
<th>APVs Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 6</td>
<td>3</td>
<td>17</td>
<td>510</td>
</tr>
<tr>
<td>Layer 5</td>
<td>2</td>
<td>14</td>
<td>280</td>
</tr>
<tr>
<td>Layer 4</td>
<td>1</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Layer 3</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

- Total Origami power dissipation: 356 W
- 404 W dissipated at the hybridboards
- Total SVD power dissipation: 760 W