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owester - ATLAS fast track trigger for SLHC

R. Brenner (on behalf of the ATLAS fast track trigger project)

* Motivation

> Atlas upgrade options

» Simulation studies

» Self seeded track trigger

» Region of interest seeded trigger
» Fast technologies for track trigger

@ Conclusions
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Motivations for a Level 1 track trigger
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Motivation cont.

_ The performance of the electron
Inclusive e 104 trigger will depend on isolation
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The high granularity and resolution of the tracker can be used:

-~ To increases L1 selectivity (isolation)
-~ For early PID (electrons, muons)
< For lower and sharper trigger thresholds

We profit today from this in the LVL2 and HLT triggers so why not at
LVL1?
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Upgrade options

» The ATLAS detector is rather accessible and several upgrade
scenarios are studied to improve the L1 trigger for SLHC

Calorimeters

Technical

proposal. ~ FUll readout of calorimeters (LAr and TileCal) - full
granularity already at L1

-~ Topological triggers
= TileCal rear sampling in muon sector logic

Muon chambers

-~ New high rate and granularity muon chambres (small wheels)
-~ Muon Drift Tube (MDT) readout in L1 trigger

Trackers

Promesal. ~ Fast TacKer (FTK), hardware track finder for ATLAS (at L1.5)
-+ ROI based track trigger at L1
= Self seeded track trigger at L1
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Simulation studies of L1 track
avoanee - trigger
» All simulation presented here is done with present detector

layout and at L~10**cm™s™'. Samples with higher luminosity are
being prepared.

* Assume that the L1 at SLHC will be similar to current L2 at LHC.

@ Study performance of calorimeters, muon chambers and
trackers.

@ Study robustness of trigger by degrading current L2

o Extract requirements for track trigger based on observables such
as single e/ triggers (not on improvements of a specific physics
analysis/searches)

» Understand requirements: n and ¢ resolutions, pT, isolation etc.
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Muon isolation
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> 10 TeV MC (no pile-up):

<= Signal: Z - tt - p+X with pT > 20 GeV
-~ Background: di-jet with 35 < pT < 70 GeV & p with pT > 8 GeV
Need to go down to ~2 GeV to achieve significant rejection

Study by: Elliot Lipeles, T. M. Hong, Doug Schaefer (Univ. of Pennsylvania)
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Muon LVL1 trigger +ID LVL2
trigger pT smeared with 1.5, 2

and 2.5; eta by 0.1; phi by 0.05.

No emulation of fake tracks

— degrading performance of
track trigger has small effect
on quality
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Muon + track trlgger quality
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Self seeded track trigger with
e doublet layers

@ Moderate pT dependent  Track (low pT)
discrimination of hits using i o i ety o | EEEiE i s v
coincidences in closely Layer
spaced double layers

Barrel crossection
Track (hi pT)

@ High pT discrimination using A
coincidences between Layer A '
several doublet layers A ;ﬂm

@ Has to operate at full BCO AR ~ 100 mm /
frequency (40 MHz) f
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ATLAS silicon strip design

» Basic design of silicon strip layers are after some modifications
are well suited for triggering

-~ Short- (~2.5cm), Long-strips (~10cm): length 1.2 m, width ~ 11 cm
-~ Thickness ~ 3-5 mm

-~ Laminate of core, electrical bus, sensors, hybrids, chips

-+ Mass 2.26 (1.73)% X0 (34% core, 66% electrical+sensors)

Silicon sensors

Carbon honeycomb or foam

Carbon fiber
Bus cable .'- facing

Hybrids —— — Readout IC’s
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Split chip approach for triggering

» Split the readout chip and add an embedded fine pitch
interconnection. Analogue part near sensor to minimize noise,
digital separated and connected top-bottom for coincidence logic.
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et Summary split approach
UNIVERSITET
» (Consider effect of additional chips and interconnect material on

the stave

> Compare to material estimates studied earlier as part of ongoing
stave R&D

-~ Effect of trigger components is not large

» Of potentially more concern are thermal and electrical
interference

» |Impact of axial/axial vs axial/stereo not yet known
Stave Flex SS Flex LS Flex LS + Trig
Core 0.73 0.73 0.73

Module 1.49 0.96 1.07

Glue 0.04 0.04 0.04
Total %Xo 2.26 1.73 1.84
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The shift of hits between top an
bottom layers separates low pT

tracks from high pT. Example for é
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Study by: M. Garcia-Sciveres et al.

Simulation results
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Even with 400 pileup
combinatorial background is
small compared to correlated
background

Combinatorial ~ 1/granularity
Correlated ~ material
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Region of Interest seeded trigger

Rol: A¢=0.2, An=0.2 at Calo Az=40cm at beam line
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> An LO similar to the current L1-Calo and L1-Muon defines the
regions of interest (Rols), no tracking information in Rol
definition

» Rol defines and eta-phi region for strips and pixel information to
be extracted, Rols about 1% of the detector/event

@ L1 uses inner detector information from the Rols that were
defined in LO

@ (Can also do a detailed correlation with outer detector
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LO implementation

» Calo and muon detectors provide a high rate LO trigger with Rol
information (500 kHz - 1MHz) with a latency < 3.2 ps, Regional
Readout Request (R3)

> The LO information is moved to a L1 buffer on the front-end chip
 Only LO information from Rol is transferred off-detector

» Full detector readout after L1 trigger with latency 50-256 ps

In Front—End ASIC

| 1
: L0 Buffer L1 Buffer .
| 1
! 40 MHz_ !
| 1
: 0.5—-1 MHz :
Conceptual K !
n I\".'
Schematic: | \ : '
| 20-80 KHE Event Builder / HLﬁ
: 4 : '
I O 1
Move / Off Dectector
Initiated _ _f__/ Rols only L1 Trigger Hardwarg
on LO T (—4—10% data)
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.= Conceptual FE-chip design
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> The Rol trigger can be easily accommodated in present tracker.

» Design studies under way in the strip readout working group for
its next prototype FE-chip, ABCN-130

» Rol based trigger gives maximum flexibility with little impact on
tracker design but requires a global TDAQ upgrade of ATLAS,
with all detectors accepting long L1 trigger latency
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= Advantages of Rol seeded trigger
UNIVERSITET
» Flexibility:
=~ any Rol driven processing possible at 1 MHz

= Full tracking in Rol with 50-100 ps for algorithm, complexity
limited by external computing

-~ MDT information in Rols at L1 (like p-Fast algorithm in current
L2)

-~ EM and jet clustering and shower-shapes with full granularity
-~ Refined track-shower matching

> Decouples tracker geometry from trigger:

=~ Sophisticated trigger algorithms are implemented in external
hardware (computers, associative memory,...) not in
dedicated very fast L1 hardware.

-~ Does not impose additional constraints on ID configuration i.e.
layers, granularity,...
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Template method: Fast TracKer
~ase (FTK), trigger at L1.5

@ Process all data from pixels and SER -
SCT On a L1A RODS. ] cluster finding B

@ Fast processing in custom made
dedicated Associative Memory

chips (AM) e voe
» Template method with 10° o
patterns (roads) to see the silicon e
hits leaving the detector at full [ Ross | 3 \E*—ffiﬁ?ﬁ:ﬁ;
speed 7
\/

o Design demonstrated by simulation
to work up to L= 3*10*cm™s”
s  Will not help the L1 problem at

SLHC but the technology is
interesting for SLHC

@ Project has submitted a Technical J?@” "” .
Proposal waiting for approval for a e
TDR (deployment 2016?) ﬁq r
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Fast template method with CAMs

@ Match pattern in strips or pixels
with precomputed templates

\o¢ iy
s Templates are stored in \ )

Ternary-CAMs (Column
Accessible Memory) providing
storage and fast match

@ Every part of the detector is
special, no symmetry exploited

@ Main questions

pattern template
- How many templates depending x| x| x| x
?
an ic(:letecttc;r geometry? X | x| %
-~ Fake rate?
i B
-~ Hardware implementation?
from detector precomputed

o Applicable for both ROI and Self

Seeded track trigger X = don't care
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Simulation studies of patterns and
e fake rates

@ Results of “toy MC” + reconstruction (barrel only), minimum pT

of 10 GeV
s SLHC upgrade tracker layout
No redundacy fake tracks / N pile-up events
design Niotal [billion] 100 200 400
3 shorts (3/3) 3 100 750 6000
1 pixel* 3 shorts (4/4) 20 10 125 2000
2 pixel* 3 shorts (5/5) 80 1 30 1000
5 shorts (5/5) 230 0.01 0.3 10
5 shorts last layer at 86 cm (5/5) 100 0.01 0.3 10
Redundacy i HE
5 shorts last layer at 86 cm (4/5) 160 5 60 1000
3 short doublets (5/6) 100 0.05 2 50
3 short doublets (6 cm spacing) (5/6) 30 0.01 0.3 10

pixel*: z-granularity coarsened from 250 ym to 2.4 cm.

Would allow for lower pT cut and standalone trigger (low pile-up)

Study by: S. Schmitt, A. Schoening (Uni Heidelberg).
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Wireless data transfer

» 60 GHz technology offers a
data transfer BW of 5-10
Gbit/s

JJJJJJ

> Technology compatible with
tracker

60 GHz slot antenna on
kapton

+ Size of components are
small, low mass (antenna ~1
cm?, chip ~-few mm?)

-+ power consumption is low
ex. 90nm CMOS Low-Power

60GHz Transceiver (Marcu
et al.) 1770mW in transmit

mode and 138mW in
receive mode

@ Allow radial data transfer for
topological trigger Inter layer intelligence
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Conclusions
UNIVERSITET
» Event selection at L1 will be a challenge at SLHC

o ATLAS is investigating several upgrade options to improve the L1
trigger

» A large improvement in trigger rates, selectivity, thresholds
seen if tracking information used in L1 trigger

o ATLAS is investigating two basic schemes to readout tracking
information for L1 trigger

» Data bandwidth and trigger latency is a challenge for L1 trigger.
New solutions in data transfer and processing are investigated.

More information on fast track trigger in “Workshop on Intelligent Trackers”, Feb
2010:

= http://indico.cern.ch/conferenceDisplay.py?confld=68677

<+ Proceeding to appear in JINST
(http://jinst.sissa.it/jinst/common/JINST_proceedingsé.jsp)
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Back-up
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hid Rol data bandwidth calculation

UNIVERSITET

Inputs:
Beam Crossing Rate 40 MHz
Desired LO Rate 500 KHz - 1 MHz
Desired L1 Rate 20 KHz (min) - 100 KHz (max)

Fraction of Data in Rol | 2%(min) - 10% (max)
Number of LO buffers ~ 128 - 256
Number of L1 buffers ~ 50 - 256

Latencies: L0 buffer i

uffer size _ 2.
LO latency Beam Crossing Rate 3.2-6.4 us
L1 latency L1 buffer size = 50-256 ;s

LO Accept Rate
Data Output Bandwidth:

Bandwidth full-event @ L1 Rate + Rol data @ LO Rate
=~ ((20-100) KHz + (2%-10%) x 1 MHz) full-events
~ 40 KHz - 200 KHz full-events
Required bandwidth depends primarily on L1 rate and Rol size
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Data bandwidth self-seeded
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* “Natural” bandwidth given by standard 100kHz L1A.
— This is 0.25% of raw sensor hits (100kHz/40Mhz)

* Each doublet layer needs ~5x natural BW for THAT layer
— 1% + 0.25% of raw hits instead of just 0.25%

* Assuming 2 doublet layers and 9 hits total, this results in
roughly double the natural BW for the whole detector-
~same as ROI

* Final answer depends on optimization-
— What momentum threshold (Aphi cut) is desired
— How little mass can be achieved

— How is the mass distributed
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