ATLAS pixel 3-D design using two tiers of electronics

P. Pangaud ^a, M. Barbero ^b, B. Chantepie ^a, J.C. Clémens ^a, R. Fei ^a, J. Fleury ^c, D. Fougeron ^a, M. Garcia-Sciveres ^c, S. Godiot ^a, T. Hemperek ^b, M. Karagounis ^b, H. Krueger ^b, A. Mekkaoui ^c, A. Rozanov ^a, N. Wermes ^b

- ^a Centre de Physique des Particules de Marseille, France
- ^b University of Bonn, Germany
- ^c Lawrence Berkeley National Laboratory, California, USA

Hybrid Pixels Detector for LHC/SLHC at CERN

Hybrid Pixels Detector of ATLAS/LHC

- Like a big camera with a 1.7 m² area and 80 Million of Pixels with a snapshot every 25ns
- Hybrid Pixels Detector of ATLAS/SLHC
 - More luminosity, more pixels more ionizing particles, more ... !!!

LHC : Luminosity of 10³⁴ cm⁻².s⁻¹ SLHC expected 10 times more !!!

P.Pangaud

CPPN

June 6-11, 2010, Loch Lomond, Scotland

3-D motivations for ATLAS read-out chip upgrades

- Functionalities splitting
- Technologies mixing

June 6-11, 2010, Loch Lomond, Scotland

Context of ATLAS 3-D beginning...

Objectives :

- Design a 3-D pixel based on the FE-I_4 pixel by splitting its functionalities into two parts :
 - one for the analogue functions,
 - one for the digital parts.
- Context :
 - 2009 : First MPW run for High Energy Physics organized by FNAL with a consortium of 15 institutes (France, Germany, Italy, Poland and United-States)
 - The proposed 3-D process combines :
 - CHARTERED 130nm technology
 - TEZZARON 3D technology

Tezzaron-Chartered 3D technology

Main characteristics :

- 2 wafers (tier 1 and tier 2) are stacked face to face with Cu-Cu thermo-compression bonding
- Via First technology : Super-Contacts (Through Silicon contacts) are formed before the BEOL of Chartered technology.
- Wafer is thinned to access Super-Contacts
- Chartered technology limited to
 5 metal levels
- Back-side metal for bonding (after thinning)
 June 6-11, 2

Wafer to wafer bonding

Bond interface layout

Submission / Test :

March 08 / Summer 08

The base is the **FEI4_P1** design (pixel read-out prototype chip for ATLAS upgrades) :

- 14x61 "analogue" pixel matrix
- Pixel size : 50x166µm
- 8 metal levels
- IBM 130nm

Submission / Test :

FEI4_P1 design : IBM 130nm, 8 metals	March 08 / Summer 08
→ Translation into 2D CHARTERED technology :	February 09 / April 09
FEC4_P1 circuit	
14x61 "analogue" pixel matrix	
Pixel size : 50x166µm	
8 metal level	
 Pixel structure : identical to FEI4 (due to schedule no optimization has been done) 	
 Objectives : test Chartered technology (functionalities, performances, radiation) 	

2

CPE

FEC4_P1 test results

- Even with no optimization for Chartered technology, main results are equivalent to IBM ones :
 - Threshold min around 1100 e-
 - Un-tuned threshold dispersion 200 e-
 - Noise lower than 80 e-

FEC4_P1 test results

- Irradiation performed at CERN/PS facility (24 GeV protons) up to 400 MRad
 - Problem discovered after 160 MRad on latches (output tends to be blocked in "1" state)
 - Difficult to work with the circuit by after
 - Problem reproduced in simulation "corners"
 - ... but

Analog is still working even with increased of noise : 250 e- (threshold dispersion is meaningless)

Submission / Test :

FEI4_P1 design : IBM 130nm, 8 metals

> FEC4_P1 circuit : 2D Chartered, 8metals

First **3D** design (MPW organized by FNAL) : **FETC4_P1** project

- Chartered (5 metal levels) + Tezzaron
- One Tier for the analogue pixel part :
 - 14x61 pixel matrix
 - Pixel size : 50x166µm
- One Tier for the digital part
 - Two versions have been designed : one dedicated for test, one "FEI4-like".

March 08 / Summer 08

February 09 / April 09

July 09 / Summer 10

Chartered-Tezzaron MPW run

2 identical wafers are stacked \Rightarrow Tier 1 and Tier 2 are in the same reticle.

4 sub-reticles for ATLAS/SLHC chips projects : FE_TC4_P1 + OmegaPix

- C1, D1 = analog tier FE-TC4-AE + analog OmegaPix
- C2 = first version for digital tier (dedicated for test) : FE-TC4-DS
- D2 = second version for digital tier : FE-TC4-DC read-out structure "FEI4-like"+ digital OmegaPix

FE-TC4-AE analogue tier

Based on FEC4_P1 chip + all adds for 3D connection

- 2 possible ways for discriminator output read-out:
 - With the simple read-out part existing yet into the pixel
 - With the tier 2 (via the Bond Interface)

Input signal from sensor via the Super-Contacts

June 6-11, 2010, Loch Lomond, Scotland

FE-TC4-DS digital tier for test : parasitic coupling study between tiers

- Analogue tier and digital tier are face to face (sensitive part facing digital part).
- FE-TC4-DS : dedicated for parasitic coupling studies between the 2 tiers.
- 3 functions :
 - Read the discriminator output
 - Generate noise (digital commutations) in front of 11 specific areas of the analogue pixel (preamplifier, feed-back, amplifier2, DAC...)
 - Test different shielding configurations.

June 6-11, 2010 Analogue pixel layout : 11 specific areas

FE-TC4-DC digital tier : complex read-out chip

Read-out chip similar to FE-I4 project :

4-pixel region :

- 61 pixels/ column => implies 31 '4-pixel' regions plus 2 dummy pixels per double-column.
- Simplified periphery and read-out control logic :
 - Some signals are provided from the outside (data read-out signals, signals for pixel hits communication to the periphery...

Final assembly (soon...)

Sensor layout : Anna Macchiolo, Max-Planck-Institut für Physik, Munich

Bonding foreseen to be done at IZM (Berlin) as for ATLAS modules Due to geometric constraints, sensor matrix is reduced :

- Sensor matrix : 7 columns of 48 pixels
- Tier 1 and Tier 2 matrix : 14 columns of 61 pixels June 6-11, 2010, Loch Lomond, Scotland

P.Pangaud

FE-TC4-P1 test results

- The submission of this first 3D MPW run organized by FNAL has encountered a lot of problems :
 - Difficulties for the establishment of a good layout frame reticle according to all requirements of Tezzaron and Chartered,
 - software development or adjustment to well considered all added 3D layers,
 - software limitations for checks,
 - ...
 - → Long delay…
- But tests are expected for this summer ...

Submission / Test :

FEI4_P1 design : IBM 130nm, 8 metals	March 08 / Summer 08
FEC4_P1 circuit : 2D Chartered, 8metals	February 09 / April 09
FETC4_P1 circuits : 3D first prototype	July 09 / Summer 10
 Second 2D prototype : FEC4_P2 circuit Chartered (8 metal levels) Based on FEC4_P1 circuit, plus : Optimization of transistors New latches for irradiation tests New PadRing strategy and ground/substrate separation 	November 09 / January 10

CP

Submission / Test :

FEI4_P1 design : IBM 130nm, 8 metals	March 08 / Summer 08
FEC4_P1 circuit : 2D Chartered, 8 metals	February 09 / April 09
FETC4_P1 circuits : 3D first prototype	July 09 / Summer 10
FEC4_P2 circuit : 2D Chartered, 8 metals	November 09 / January 10
 FEC4_P3 : Third 2D Chartered prototype Chartered (8 metal levels but only 5 are used) Smaller pixel size : 50µm x 125µm Design of new sub-circuits and functionalities : Current Reference Analogue multiplexor PLL Triple redundancy 	September 10 / End of 10

P.Pangaud

CPI

June 6-11, 2010, Loch Lomond, Scotland

CPPM

Submission / Test :

FEI4_P1 desi	gn : IBM 130nm, 8 metals	March 08 / Summer 08
FEC4_P1	circuit : 2D Chartered, 8 metals	February 09 / April 09
FETC4_P	1 circuits : 3D first prototype	July 09 / Summer 10
FEC4_P2	circuit : 2D Chartered, 8 metals	November 09 / January 10
FEC4_P3	circuit : 2D Chartered, 8 metals	September 10 / End of 10
FETC4_A	design : Second/last 3D design	Begin of 11
	1 eize : 50 um x 125 um	
Corr anal	nplete functionalities will be implanted on ogue and digital Tiers.	
P.Pangaud	June 6-11, 2010, Loch Lomond, Scotland	

The FETC4 ATLAS chip

FEI3 18	ncluding pad frame
80 cols X 336 rows (~ 19mm X 20mm) IBM kerf review and approval may be needed)	X 20mm) i
	HIP (~ 2mm
336 < rows>	END OF CI

3D IC Consortium

FETC4_A, run 3D Tezzaron-Chartered technology :

- Very large matrix size : 336 x 80 pixels
 Chip size of 18.8 x 20.1 mm.
 1.95 mm End Of Column size.
- Small pixel size : 125µm x 50µm
- Bump bond pads compatible with 250 µm sensor pitch (FEI4_A project)
- The FETC4 chip is a FE_I4 blocks reuse, compatibility with FEI4 chip for sensors, bump bonding, module/stave integration, testing tools, software, mechanics

Conclusions and future plans

- Benefits of 3D technology for hybrid pixel detectors :
 - Pixel size reduction
 - Technologies mixing
 - More functionalities can be implemented in front of the analogue pixel
 - Since 2 years
 - A 3D prototype, in Tezzaron-Chartered technology, was designed and submitted, as a test bench for this technology, in framework of ATLAS pixel upgrade for higher luminosities.
 - 2D prototyping blocks, in Chartered technology only, were designed and tested to more quickly help the 3D approach.

Future Plans:

- Prototyping blocks in 2D Chartered in Summer (e.g. FEND, CREF, CLKGEN, new LVDS...) placed into the FEC4_P3
- Tests will be performed on FETC4_AEDS (DC) and on 3D test structures.
- FEC4_P2 chip (transistor optimization and few minor corrections) is under test, and under radiation at CERN/PS.
- Start working to design a full scale FETC4_A