

Operation and Performance LHCb Vertex Detector

- LHCb & VELO
- Operation
- Performance
 - M. Gersabeck, S. Redford, & M. Alexander
- New Issues

LHCb: Spectrometer

Vertex 2010

VELO: Schematic

- 2 retractable detector halves
- 21 stations per half with an R and $~~\varphi$ sensor

VELO: Complete half

Photo along beam pipe

VELO: Electronics

- Analogue output from ASICS on hybrids
 - 40MHz: up to 1MHz trigger rate
 - Repeater cards outside tank
- Digitization 60m away
- FPGAs handle processing of signals and zero suppression
 - 10⁶ parameters need uploading
 - 7bit arithmetic
 - Integer pedestals and CM subtractions
 - Possibility of non-zero suppressed data to be sent to storage

VELO: Sensors

- highly segmented
- n+n
 - One n⁺p module
 - Replacement n+p
 - p-spray isolation
- 2048 strips/sensor
- ~40 micron inner pitch

VELO: Material Budget

Average is 18.91% X₀ Particle exiting the VELO

See M. Gersabeck's talk for "tomographic" view of the VELO

Operation: Key Decisions

- Keep Detector LV power on except MD
 - To avoid thermal cycling
- Operate Cooling at -30°C (tested to -35°C)
- HV ramped at Beam Stable to 150V
- Closing
 - Manual operation/verification
 - (Automation see S. Redford's talk)
 - VELO would not be closed below 2TeV/c per beam
 - This to avoid maximize proximity of beam to foil at low energies
- Provide 24x7 coverage with VELO shifts
 - When collisions foreseen
- Non-Zero Suppressed Data read out
 - Small percentage of bandwidth O(1%).

Operation: Shifters

- What do they do?
 - Supervise safety of VELO
 - Learning about environment
 - Vacuum, temperatures as we increase beam current
 - Ensuring quality (occupancy, noise etc) all look fine
 - On the look out for common mode
 - Control the closing!
 - Follow vertex position & Luminosity monitors
- Hard to remove humans from the loop quite yet!

First Collisions 2009

Performance: 2010 – June

- Six months later
 - LHC much higher luminosity
 - New beam conditions (squeeze)
 - Increasing the numbers of bunches
- We now have >10⁹ events
 - Many orders of magnitude away from radiation damage regime!
- What has changed with huge sample?

Vertex 2010

- Huge statistics (!)
- Pseudo Hit maps as sensor 1D
 - Require interpolation

Performance: Boundaries

- Boundary 2:3 polysilicon bias line
 - 77 micron gap between strip implant
 - Intermediate bias line with implant
 - Charge in this region "lost"
- Boundary <u>1:2</u> and <u>3:4</u> no bias line
 - 38 micron gap between implant

mm from sector boundary

Performance: Timing

Distribution of pulse heights v time

All links timed ~1ns

Interactions can be separated by 25ns

Vertex 2010

After several years of operation expect S/N to drop to O(10).

Detector	S/N
R	18.3
Phi Inner Strips - Routed over outer strips	21.2
Phi Outer Strips - <i>No</i> overlaid routing lines	23.3
Phi Outer Strips - Overlaid routing lines	19.6

Performance: Common Mode

- VELO close to beam and O(1mm) from r.f. foil
 - Common mode pickup a concern
 - NZS studies to search for beam related effects

Performance: Common Mode

- Use our 1% NZS data
 - Deploy a 32 channel "flat" common mode substraction
 - Also need a 32 channel linear (or higher) CM
- Still under study
 - Causes/sources of large CM corrections in collision data
 - Beam intensity correlation
 - Minimization of CM effects with ASIC settings

No serious effects yet!

Performance: Charge Sharing

R sensors

Eta distributions

M. Alexanders poster Thursday ...

A puzzle:

Our resolution at small incident angles seems is dominated by our fraction of single strips O(60%) at normal incidence

Too many 1 strip clusters => Could the pspray have affected the implant => effectively broadning it?

Nominally implant ~40% pitch – looks bigger

Complicated – vary with angle and increasing pitch! Resolution (*see Gersabeck's talk*)

Performance: Efficienc

Efficiency close to 100%

Note: 0.7% dead strips from 172032 fabrication/build removed.

Chip died post installation. Tried to reproduce error assuming pulling single bonds off.

Performance: Rad. Damage

- In preparation the infrastucture to study detector degradation
 - Regular HV scans
 - Gain normalization
- Other possible systematic effects not yet studied
 - Cluster shifting
 - Loss of charge sharing

Issues: VELO Closing

- VELO when "closed" is open by approx 300um
- Why?
 - designed to be ~0 CTE
 - Expected CF/Epoxy CTE O(-1 to 1 ppm/C)

"ISOTHERMAL" Measured Shifts for $\Delta T = +25C$

"ISOTHERMAL" PredictedShifts for $\Delta T = -25C$

Vertex 2010

Issues: VELO closing

- Of 300 microns opening about O(70um) estimated due to module contraction
 - To be verified in situ with different cooling points.
 Data at different operational temperature(s)
- Further 150 microns known from survey
 Not quite all 300µm accounted for!
- In future
 - Can (in principle) be solved by "overdriving" the VELO halves against each other
 - Unfortunately the foils already touch
 - Need to see if "overdrive" really needed

Comment:

- Difficulty of thermal measurements on modules so far from room temp
 - Same for irradiated objects
 - How do you measure under real conditions?

Issues: Cooling

- Biphase CO₂
 - See last years VERTEX proceedings
 - Has worked beautifully but one or two (minor) issues
 - On *restart* at -30°C (readjusted to minimum point) full cooling power took over 48 hours to establish
 - In 2009 a blockage slowly occured in the filters of the CO2
 - No problems in 2010.

Intervention to unblock fliter

Comment: Software

- Software/Firmware
 - Enormous effort to *emulate* (bitwise) in detail what the FPGA does. Very successful
- Non-zero suppressed data critical to deep understanding of detector
 - May need to use "non emulated" mode for this in future
 - Remove integerization and cluster threshold effects for special studies
- Must fight keep our NZS bandwidth!

Summary

- VELO
 - Operated well from day 1
 - High Efficiency
 - Enables physics of LHCb
 - See M. Gersabecks talk
 - Expect to reach full potential in 2010
- Substantial challenge lies ahead with radiation damage ...

BACKUP

Operation: Components

- 2009/2010
 - Thermo/Mechanics/Vac
 - DAQ & ECS
 - Timing
 - Online Monitoring
 - Closing
 - Offline Monitoring
 - Alignment
 - Data Quality
 - Software Coordination

- Safety, Safety, Safety
 - Total unknown operating environment for us
 - Extended operation in vacuum
 - Moveable detectors
 - Emergency Procedures
 - Installed overide of all computer systems to provided a failsafe (DSS control) to kill all power to VELO

Issues: VELO Closing

Shift expected is approx -32 to -34µm/side

Opening ~ $-62\mu m$ to $-68\mu m$

i.e. O(70um)

About 30% of 300micron opening atrributable to module shrinkage

Temp Hybrid ~<-14 C> corresponding to $\Delta T(-30C)$ non thermally isolatedPedestal ~(thermally isolatedPedestal ~Pedestal)Pedestal ~

△T(-30C) -> -3 Pedestal ~(-1) -> +1 Pedestal ~(-25) -> +3

-> -35μm Hybrid 1) -> +1μm Pedestal 25) -> +3μm

Vertex 2010

Hybrid/Paddle Temp

Photo along beam pipe Foils (Box) closed

eam pipe – Secondary

Foil a key element in any future VELO detector... See Buytaert's talk

Foil

RF protection

Projection: Two strip clusters

