

Future of Low Mass Pixel Systems with MAPS

Jérôme Baudot, baudot@in2p3.fr

- Specifications for different experiments
- MAPS, standard performances & challenges
- 2D or planar CMOS technologies
- Integration technologies
- 3D integrated circuit technologies
- Conclusion

Why low mass + high granularity?

■ Charm hadrons

- x STAR, ALICE, CBM
- Charm jet tagging
 - x ILC, CLIC, (superB)
- B decay length
 - SuperB

x ILC, CLIC, SuperB, CBM

■ Low momentum tracks

x STAR, ALICE

Charm hadrons ct ~ 100 μm

Low $\beta \gamma_R \sim 0.28 \rightarrow \sigma(\Delta z) \sim 60 \mu m$

P, down to 100 MeV/c

Impact parameter resolution: (2 layers hypothesis)

Specification summary

■ For the most demanding layer (1st out of 2 to 6)

- Orders of magnitude, no security factor, subject to modification
- Apply to one layer only

	STAR	СВМ	ALICE	ILC 500GeV	CLIC 3TeV	SuperB
spatial resolution (μm)	< 10	~5	~ 5	< 3	~ILC	~15
Material budget (% X0)	< 0.3	0.3	0.3	< 0.3	~ILC	<1.0
Hit rate (x10 ⁶ /s/cm ²)	0(0.1)	<i>O</i> (1-10)	<i>O</i> (1)	<i>O</i> (0.2)	<i>O</i> (1)	<i>O</i> (20)
Radiation / year (Mrad) (n _{eq} /cm²)	O(0.2) $O(10^{12})$	<i>O</i> (30) <10 ¹⁴		O(0.1) $O(10^{11)}$	x10/ ILC	<i>O</i> (3) ?
Power dissipation (W/cm²)	0.1	1-2		0.1		1-5

Notes: 10⁶ hits/s/cm² over 20x20 μm² pixels
BUT sparse data~70 Mbits/s over 1 cm²

MAPS, the basics

Technology

- x Industry standard for ICs
- All processes not optimized
 - → Epitaxial layer thickness
 - # metal layers
 - → Nwell Psubstrate junction

Intrinsically thin sensors

- x sensitive layer ~10-20 μm
 - → Small MIP signal, few 100 e- per pixel → requires low pixel noise O(10 e-)
- X Substrate almost useless
 - → Few μm enough, total thickness could reach 20 μm
- x Monolithic & active
 - → No external IC required in vicinity

MAPS, standard performances

■ From the MIMOSA family

- Developed at IPHC-Strasbourg
- x AMS 0.35 μm process, ~11 μm epitaxial layer
- x 3 transistors pixel <u>Sequential analogue readout</u>
- Performances assessed also @ 50 µm thickness
 - Thinning routinely achieve by industry.

■ Hit rate

- x With parallel analog outputs
- x 1Mpixels ~ 1ms r.o, time

■ Radiation tolerance

- x lonizing: ~Mrad
- x Non-ionizing: few 10¹² n_{eq}/cm²
- Integration time and temperature dependant

Maps, the challenges

2D (planar) process

■ Increasing the hit rate

Basic idea: zero-suppression

■ Strategy 1:

- x Peripheral discrimination
- Increasing the readout speed
- x IPHC(Strasbourg)+IRFU(Saclay) groups

■ Strategy 2:

- x In-pixel discrimination
- x Data-driven r.o. mode with time-stamp @ periphery
- SLIM5 collaboration (INFN+Italian Universities)
- x Also INMAPS process @ RAL

2D - peripheral discrimination

■ MIMOSA 26

- Fabricated end 2008AMS 0.35 μm process
- x Binary output
- x ~100 μs readout time
- $x > 10^6 \text{ hits/cm}^2/\text{s}$

■ First applications

- x EUDET beam telescope (running since 2009)
- FIRST experiment (2011, GSI)
- Forerunner of final sensor for STAR (2013)
 - → <u>Talk by M.Szelezniak</u>

 "MAPS based vertex detector at STAR",

 Thursday 17h30

2D - peripheral discrimination

- Further applications, r.o. Time ~10 μs
 - x ILC, CBM
 - → <u>Talk C.Schmidt</u> "FAIR Silicon Tracking Detector System", **Thursday 17h**

Extrapolate MIMOSA26 architecture

- x Move to 0.18 μm process (ex. INMAPS techno. introduced by RAL)
 - → Higher internal clock
 - Lower power dissipation
 - Reduced insensitive area
- x Double-sided readout
 - → readout time / 2
- x Stretched pixels with ADC
 - → Similar spatial resolution
 - → Readout time / 4-5

2D - In-Pixel discrimination

APSEL family

- 🗴 Techno. STM .13 μm,
- x APSEL4D → APSEL5T
 - → Pixel 50x50 μ m² → 40x40 μ m²
 - → Amplification scheme "smaller"
- Read-out through MacroPixel
 - Using dedicated logic
 - → Optimized for 100.10⁶ hits/cm²/s

APSEL 4D, fab. Early 2008

(non-ionizing) Radiation hard 2D process

■ High resistivity epitaxial layer

- Allow some level of depletion
- Faster collection
 - → lower sensitivity to crystal defects
 - → lower signal spread over pixels

■ Prototypes @ IPHC

- x MIMOSA 25, fab 2008
 - → XFAB 0.6 μm, 1000 Ω.cm
 - 20 μm pitch
 - → 80 µs analog read-out
- X MIMOSA 26HR, fab end 2009
 - → AMS 0.35μm, 400 Ω.cm
 - 10, 15 & 20 μm epitaxial lay
 - → In beam test, up to 3.10¹³ n_{eq}/cm²
- Also provided by INMAPS process (RAL) & IBM LePIX (CERN)

TCAD simulation by A.Dorokhov IPHC

Integration technologies

■ "Smarter" AND still thin

- x Basic idea: multi-points in a single layer
- x Possible with
 - → Thin sensors
 - → Thin support material
 - thin cables

x Benefits

- → Tracklets for pointing res. or triggering
- → Mixing ≠ granularity/speed compromises

MAPS advantages

- Already thin
- No additional IC required
- x ~30°C operation possible
 - → Active cooling avoidable

Double sided ladders

■ The PLUME project

- x Double sided ladder @ 0.4% X0
- Passive cooling: air flow
- Power pulsing
- Bristol U., DESY, Oxford U., IPHC
- x Several iterations over 2009-2012
 - → Current proto @ 0.6%X0

■ The SuperB project

- Few W/cm² → Active cooling required
- x Support from carbon fiber utubes
 - → 0.15%X0
- INFN and Italian Universities groups

From integration to embedding

■ The SERWIETE project

- x Embed sensors inside soft polyimide cable
 - → Cable with traces ~< 0.1% X0
- Benefit fully from the MAPS thinness
 - → Sensors < 30 μm
- X IKF-Frankfort+IPHC+IMEC
- → Adaptable to the support shape
 - → Beam pipes, detector edges, ...
- More "embedding"
 - Stitching sensors (proposed by several foundries)
 - → reduce metal traces & support
 - Opto-couplers
 - High data-thoughput with limited additional material

IMEC-Leuven, Belgium examples:

Testing, evaluating

■ The AIDA project

- **x** EU-FrameProg.7, 2011-2014
- Worpackage 9.2
 - → Alignment studies
 - → Power extraction
 - → Mechanical stability
 - → Power pulsing (ILC)

3D process

Combining functionalities & technologies

- Best prepared for readout (optical link)
- X Overcome 2D process limitations
 - → Smallest feature size
 - → rad.tol. sensitive layer
 - → Integrate more intelligence
 - → Geometrically effective
- x Road to r.o. time ~ μs level

International 3D consortium

- x Lead by FNAL (pioneering work)
- First circuits expected in 2010 (many different approaches)
- More info on Thursday session
 - → <u>G.Traversi</u>, "3D consrtium", 9h
 - → R.Yarema "The Via Revolution", 11h

Conclusion

- On the roads offered by different technologies for MAPS
- Challenge I: higher hit rate
 - x Deep sub-micron 2D processes, ~10μs
 - x Advanced integration technologies: compact multi-layer systems
 - x Most promising: 3D processes, ~μs read-out >2015
- Challenge II: higher radiation tolerance
 - x High resistivity epitaxial layer for non-ionizing rad.
- System challenge: data transmission & storage bottleneck
 - Advanced integration

Impact on imaging systems

- From multi-layers & data throughput
- Intelligent imagers (definition, scene detection,...)
- Multi-type radiation detection (dosimetry, veto function,...)

Backups

Thanks for your attention

Acronyms helper

- x AID=Alignment Investigation Device
- x AIDA=Advanced European Infrastructures for Detectors at Accelerators
- x CBM=Compressed Baryonic Matter at FAIR, GSI
- x EUDET=EUropean DETector R&D towards the International Linear Collider
- x INMAPS=Isolated N-wells, or INtelligent MAPS
- x MALT=Monolithic Active Liquid Tranquillizer
- x MIMOSA=Minimum Ionizing MOS Active pixels sensor
- x PLUME=Pixelated Ladder with Ultra-low Material Embedding
- x SERWIETE=SEnsor Row Wrapped In Extra-Thin Envelope
- x STAR=Solenoid Tracker At Rhic, BNL