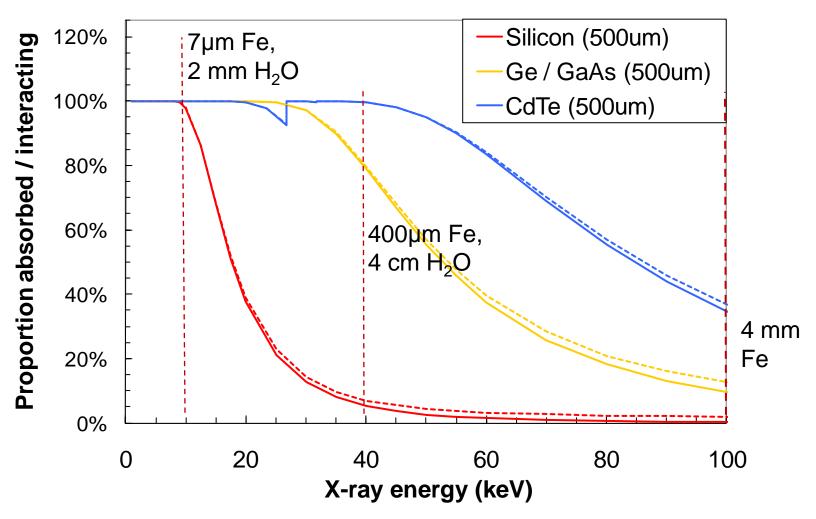

Development of high-Z sensors for pixel array detectors

David Pennicard, DESY

Heinz Graafsma, Sabine Sengelmann, Sergej Smoljanin, Helmut Hirsemann, Peter Goettlicher

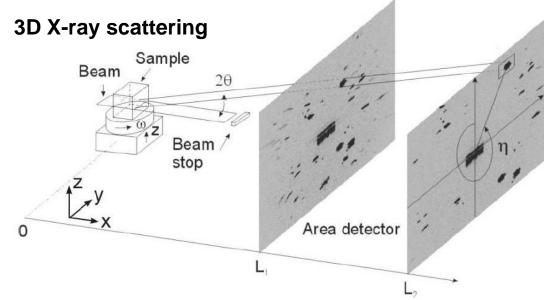
Vertex 2010, Loch Lomond, 6-11 June 2010


Development of high-Z sensors for pixel array detectors

- Applications of high-Z pixel arrays
- Overview of high-Z sensors
 - CdTe / CZT
 - GaAs
- Work on pixellated Ge sensors at DESY
- Summary

High-Z materials for X-ray absorption

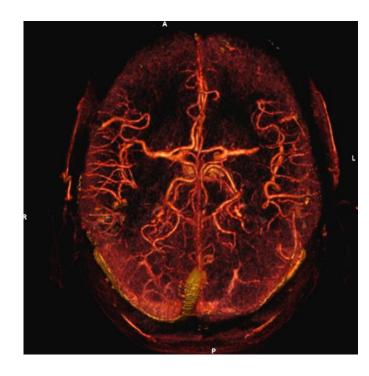
X-ray absorption / interaction



Synchrotron applications

- > PETRA-III at DESY
 - Beamline energies to 150keV (mostly 50keV)
 - Materials science apps

- High-E scattering and tomography
 - Structure at buried interfaces, grain mapping...



Other applications

- Energy resolution!
- Medical & small animal imaging / CT
 - Distinguish bone, tissue, contrast agents...
- > Astronomy
 - Hard X-ray telescopes
- Gamma ray
 - E.g. Compton camera...

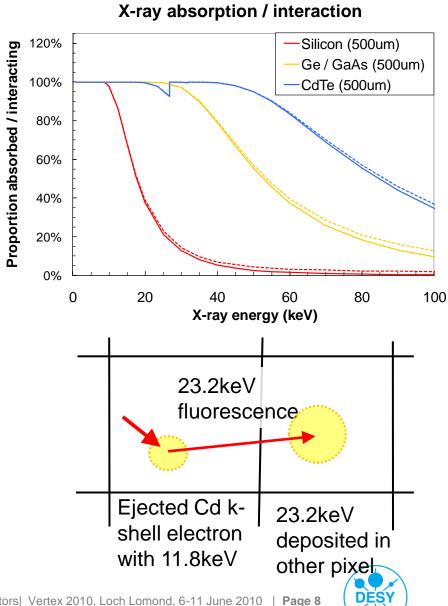
Johnson 2007 - Material differentiation by dual energy CT: initial experience

Collaborations

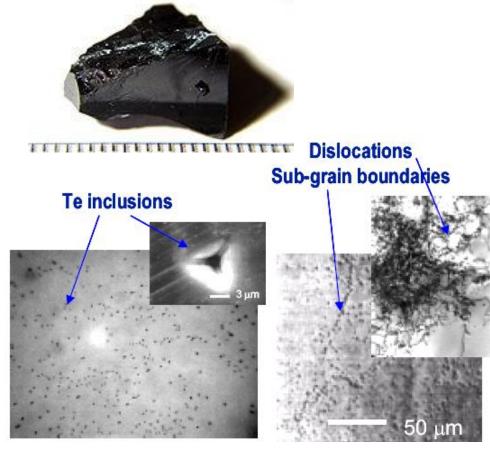
- HiZPAD (Hi-Z sensors for Pixel Array Detectors)
 - ESRF (coordinator), CNRS/D2AM, DESY, DLS, ELETTRA, PSI/SLS, SOLEIL
 - CPPM, RAL, University of Freiburg FMF, University of Surrey, DECTRIS

Medipix3

- See Richard Plackett's talk
- Inter-pixel communication allows thick high-Z sensors


Development of high-Z sensors for pixel array detectors

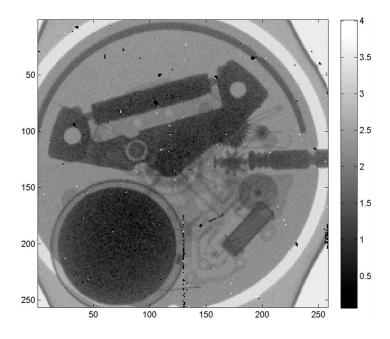
- Applications of high-Z pixel arrays
- > Overview of high-Z sensors
 - CdTe / CZT
 - GaAs
- Work on pixellated Ge sensors at DESY
- Summary


General issues with high-Z sensors

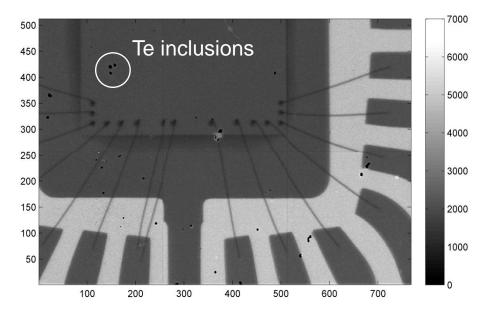
- Fluorescence
 - Degrades spatial and energy resolution above k-edge
- Bulk properties
 - Leakage current, resistivity, trapping
- Material homogeneity and area
 - Grain boundaries want single crystal
- > Pixellation
- Bump bonding

Cadmium Telluride

- Used for γ-ray spectroscopy
- Commercially-grown wafers:
 - Single-crystal now 3"
 - Defects affect uniformity
- > Properties
 - 1.44eV bandgap (room T)
 - High resistivity
 - Schottky or ohmic metal contacts
- Trapping & drift distances:
 - Electrons cm
 - Holes mm
 - Use electron readout!



Szeles 2003, CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications



CdTe Medipix2 Assemblies

- > 1mm CdTe (Acrorad, 3")
 - Ohmic pixel contacts

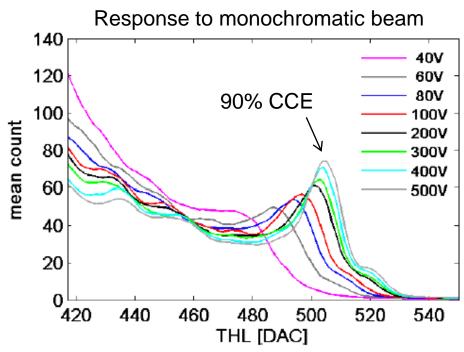
>QUAD (2x2) 110 µm pixel pitch 28x28 mm² active area Flat field corrected

>Hexa (2x3) 55 µm pixel pitch 28x43 mm² active area,390,000 pixels Flat field & filter

Produced by
A. Fauler, A. Zwerger, M. Fiederle
Freiburger Materialforschungszentrum FMF
Albert-Ludwigs-Universität Freiburg

CdZnTe

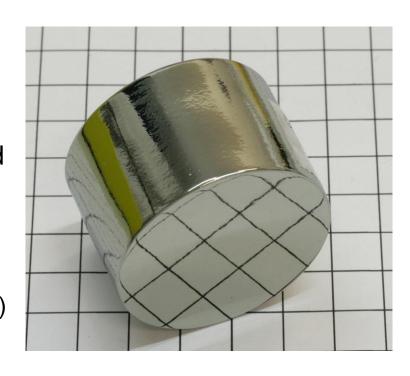
- > Typically Cd_{0.9}Zn_{0.1}Te
 - Increased bandgap (1.57eV) lower current
- Produced in large polycrystalline ingots
 - Good single-crystal segments up to 20*20mm²
- > Small pixel arrays possible
 - NuSTAR (Nuclear Spectroscopic Telescope Array)
 - 20*20mm², 600µm pixel size



Gallium Arsenide

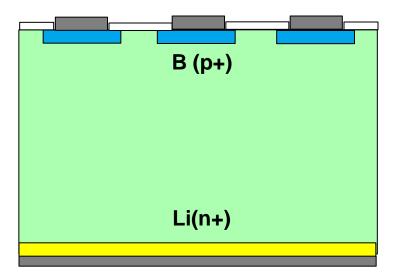
- Better single-crystal production (6")
- > 1.43eV bandgap (room T operation)
- Problem defects!
 - Shallow defects prevent depletion
 - Carrier lifetimes
- Epitaxial growth or compensation

L. Tlustos (CERN), Georgy Shekov (JINR Dubna), Oleg P. Tolbanov (Tomsk State University) "Characterisation of a GaAs(Cr) Medipix2 hybrid pixel detector", IWorid 2009


Development of high-Z sensors for pixel array detectors

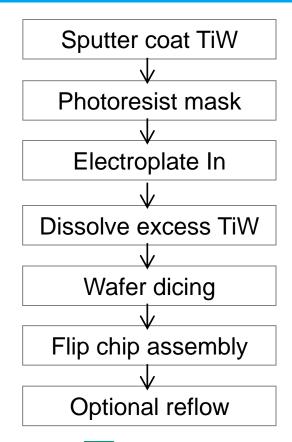
- Applications of high-Z pixel arrays
- Overview of high-Z sensors
 - CdTe / CZT
 - GaAs
- > Work on pixellated Ge sensors at DESY
- Summary

Germanium pixels


- High-purity, high uniformity 95mm Ge wafers available
 - Transport & depletion fine
- Narrow bandgap (0.66eV) means cooled operation needed
 - Per pixel current must be within ROC limits (order of nA)
 - Est. -50°C operation with Medipix3 (55µm)
 - Need to consider thermal contraction, etc.
 - "Engineering problems"
- Fine pixellation and bump-bonding must be developed

Pixel detector production at Canberra (Lingolsheim)

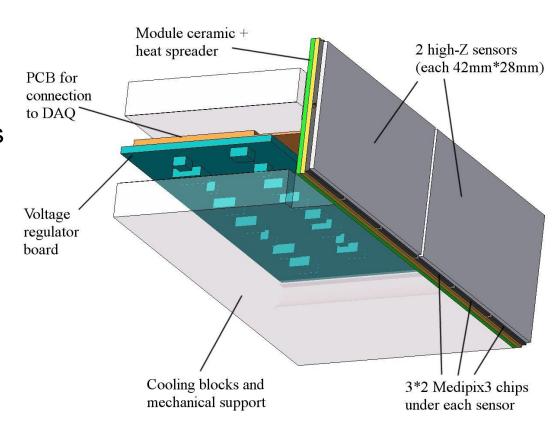
- Diodes produced by lithography (p-on-n)
 - Thinned germanium wafer (0.5mm+)
 - Li diffused ohmic back contact
 - Boron implanted pixels
 - Passivation, Al metallisation
- > 2 runs planned:
- Medipix3 singles
 - 55μm, 110μm and 165μm pixel, 500μm
- Second run 2*3 assemblies (42*28mm)
 - Option of thicker Ge



M Lampert, M Zuvic, J Beau

Bump bonding at Fraunhofer IZM (Berlin)

- Low temp bonding required
- Bonds must tolerate thermal contraction
 - 3.5μm max displacement for ΔT=100K
- Indium bump bonding
 - Bumps on ASIC and sensor
 - Thermosonic compression at low T
 - Possible reflow above 156 C
- Currently performing tests on Ge diodes



T Fritzsch, H Oppermann, O Ehrmann, R Jordan

Medipix3 module readout

- > 2*6 chip module (28*85mm)
 - Tilable
- Cooling through thermal vias
 - Ceramic and heat spreader match Ge CTE
- Readout FPGA board
 - 10 GBE for high-speed readout
 - Improved infrastructure needed

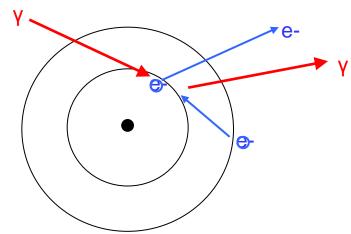
Conclusions

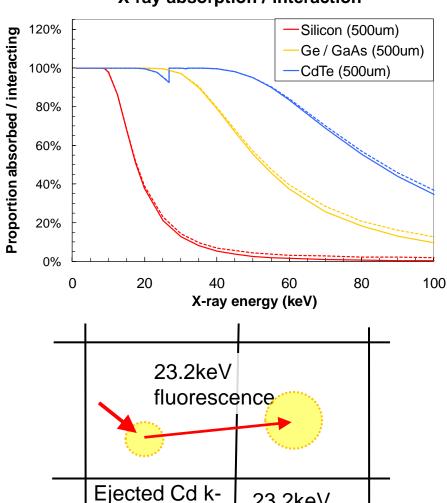
- Demand for high-Z hybrid pixels
 - Material science, biology / medicine, astronomy...
- Promising results from CdTe / CZT, GaAs
 - Commercial CdTe / CZT wafers improving
 - Improved GaAs compensation
- Ge pixels could provide high-uniformity sensors (albeit without room-temp operation)

Thanks for listening

What do hybrid pixels offer?

- Current generation (Pilatus, Medipix2, XPAD2/3)
 - Noise rejection (photon counting)
 - High speed
 - Direct detection for small PSF
- Future detectors (Eiger, Medipix3, XPAD3+)
 - Deadtime-free readout
 - Inter-pixel communication (Medipix3)
 - Correct for charge sharing
 - Allows use of thick sensors
 - Energy measurement
 - Medipix3 provides 2 or 8 bins (55µm or 110µm)




Choice of material and fluorescence effects

- > Fluorescence harms performance immediately above k-shell
 - ~26.7keV for CdTe
 - ~11.1keV for Ge
- Motivation to use different materials

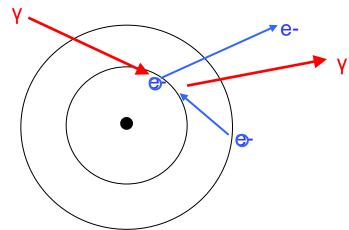
35keV photon in CdTe

X-ray absorption / interaction

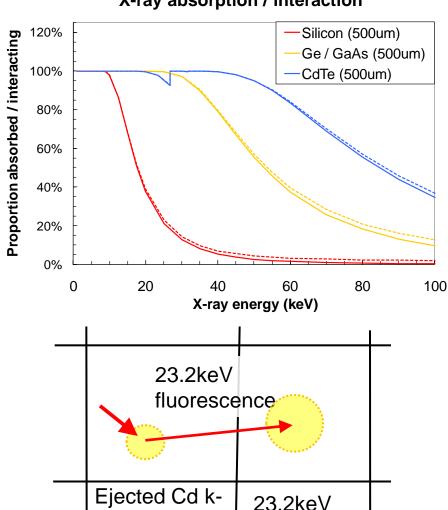
shell electron

with 11.8keV

23.2keV


deposited in

other pixel

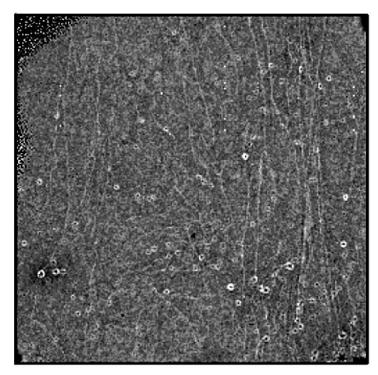

Choice of material and fluorescence effects

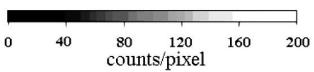
- > Fluorescence harms performance immediately above k-shell
 - ~26.7keV for CdTe
 - ~11.1keV for Ge
- Motivation to use different materials

35keV photon in CdTe

X-ray absorption / interaction

deposited in


other pixel


shell electron

with 11.8keV

Cadmium Telluride

- Used for γ-ray spectroscopy
- Commercially-grown wafers:
 - Single-crystal now 3", 1mm-thick
 - Defects affect uniformity
- > Properties
 - 1.44eV bandgap (room T)
 - High resistivity
 - Schottky or ohmic metal contacts
- Trapping & drift distances:
 - Electrons cm
 - Holes mm
 - Use electron readout!

M. Chmeissani et al. 2004, "First Experimental Tests With a CdTe Photon Counting Pixel Detector Hybridized With a Medipix2 Readout Chip"

Cadmium Telluride

- Typically use Schottky or ohmic contacts (Pt, Au, In)
- > Temperatures above 200°C degrade transport properties
 - Low temp sputtering / electroless deposition of contacts
- Low-temp bump bonding (Pb/Sn, In)
 - CdTe relatively fragile
- Demonstrated with Medipix2, XPAD3

Medipix2 quad (FMF)

Gallium Arsenide

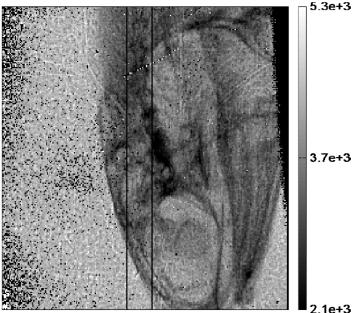
- Better single-crystal production (6")
- 1.43eV bandgap (room T operation)
- Problem defects!
 - Shallow defects prevent depletion
 - Carrier lifetimes
- Semi-insulating GaAs
 - Compensation of shallow defects
 - Operated as photoconductor / Schottky
- Epitaxial GaAs
 - Growth with fewer shallow defects
 - Operated as diode

GaAs (Cr) on Medipix2

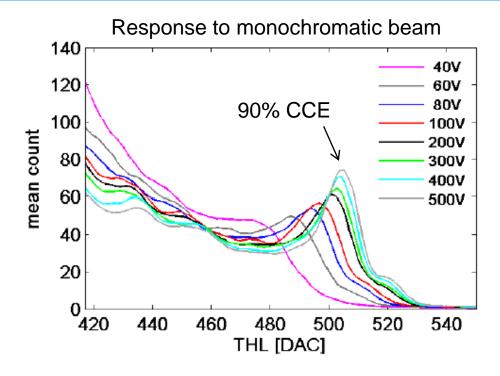
JINR Dubna &Tomsk State University

Gallium Arsenide – Semi insulating

- As-rich growth produces deep defects (EL2)
 - Compensate shallow traps
 - But increase electron trapping (~100µm)
- Cr compensation promising
 - Dope n-type during growth, then overcompensate p-type with Cr diffusion
- Metallised contacts
 - Au for photoconductor (right)
 - Pt-Ti-Au for Schottky
- Moderate temp tolerance, physically fragile
 - Bonding at low temp
 - Indium / low T solder

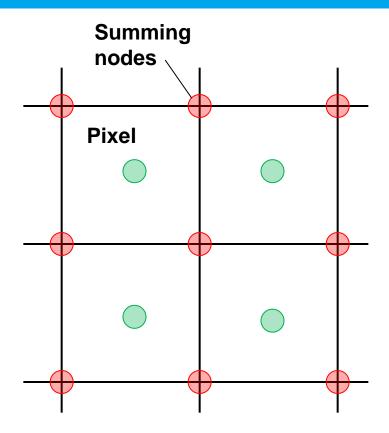


JINR Dubna, Tomsk State University



Chromium-compensated GaAs

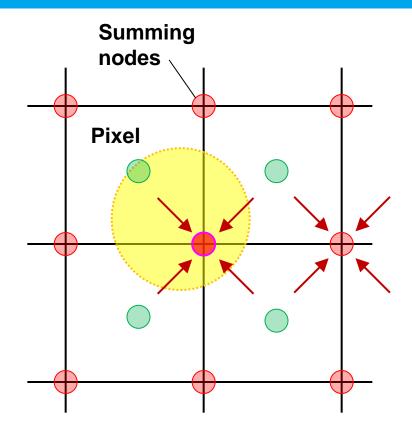
- Medipix2
- > 300µm thick (1mm possible)
 - Photoconductive sensor


Anchovy head (flat field corrected)

L. Tlustos (CERN), Georgy Shekov (JINR Dubna), Oleg P. Tolbanov (Tomsk State University) "Characterisation of a GaAs(Cr) Medipix2 hybrid pixel detector", IWorid 2009

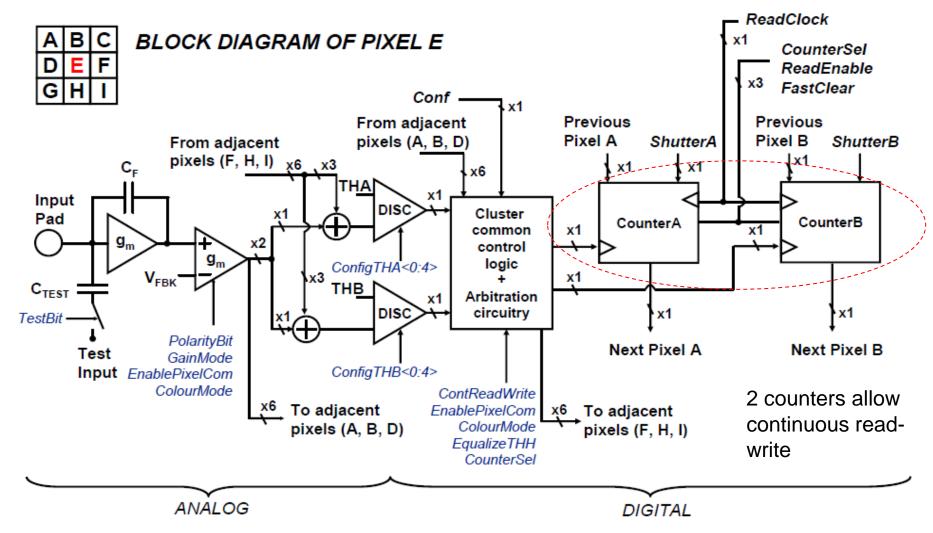
Medipix3

- > 256 * 256 pixels, 55µm pitch
 - 14.1 * 14.1 mm² area
- > Photon counting
- 2 counters / pixel (12bit)
 - Continuous R/W
 - or 2 energy bins
- Charge summing mode
- Optional 110µm pixels
 - 8 energy bins
- > 2000fps
 - More with reduced counter depth

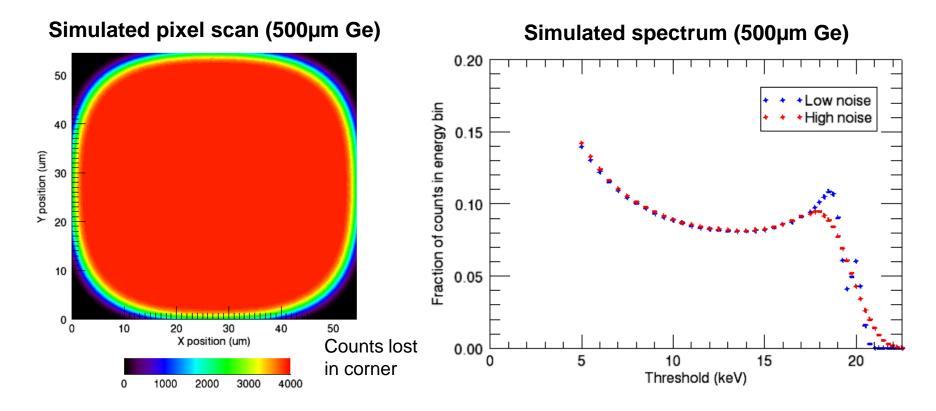


Signal summing at nodes: Node with highest signal "wins"

Medipix3


- > 256 * 256 pixels, 55µm pitch
 - 14.1 * 14.1 mm² area
- > Photon counting
- 2 counters / pixel (12bit)
 - Continuous R/W
 - or 2 energy bins
- Charge summing mode
- Optional 110µm pixels
 - 8 energy bins
- > 2000fps
 - More with reduced counter depth

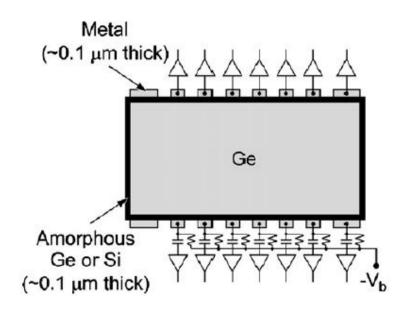
Signal summing at nodes: Node with highest signal "wins"


Medipix3 circuitry

Effects of charge sharing

- Loss of efficiency at pixel corners
 - Typically, set threshold to E/2 with mono beam
- Loss of energy resolution

Medipix3 charge summing mode


- Allows large sensor thickness while maintaining energy resolution
 - No efficiency loss unless charge cloud > pixel size

Alternative methods of processing Ge

- Mechanical segmentation of contacts
 - Frequently used for large sensors
 - Limits on pitch
- Amorphous Ge contacts (e.g. LBNL, LLNL)
 - Similar to Schottky
 - Higher leakage current
 - but allows double-sided strips

