

CMS Silicon strips operations and performance

Erik Butz Massachusetts Institute of Technology

for the CMS collaboration

Vertex 2010

8/6/2010

Introduction

Will focus here on low-level results from the silicon strip tracker only, covering all aspects needed to get the system to work

- For results on the operation of the CMS pixel detector
 - $\rightarrow K.Ecklund$
- For results on the tracking performance of the CMS tracking system
 - \rightarrow A Venturi
- For studies of beam-backgrounds in the CMS pixel detector
 - \rightarrow H.Snoek

Introduction - The CMS Silicon Strip Tracker

0.000 m

TOB

0.5

- Largest silicon tracker ever built (active area $\sim 200 \text{ m}^2$)
- 5 m long, 2.5 m diameter
- Approx. 9.6 million electronic channels 10 layers in barrel region (4 Inner Barrel (TIB), 6 Outer Barrel (TOB)) and 9 discs in the endcaps (up to 14 Hits per track)
- Analog readout
- First "all-silicon" central tracker

+ Pixel detector (>60 Mio channels (not covered))

Stereomodule

TEC

- beam-pipe ($|\eta| < 2.5$)
- 4 layers (3 rings) contain stereo modules for 2-D hit reconstruction

The Modules of the CMS Silicon Strip Tracker

Sensors

- p⁺-implants in n-type silicon bulk, n⁺-backplane for ohmic contact
 - ightarrow 320 $m \mu m$ and 500 $m \mu m$ thick sensors used
- Strip pitch 83 $\mu\mathrm{m}$ 205 $\mu\mathrm{m}$
- AC-coupled Readout

Modules

- Analog readout: APV25 readout chip, 128 channels \times 192 cell pipeline buffer (4.8 μ s latency for Level 1 trigger decision)
- Readout in Peak- or Deconvolution Mode
- Data transfer from tracker volume via Optical link

Readout Modes of CMS Silicon Strip Tracker

Strip Tracker can be read out in peak- or deconvolution mode (sampled every 25 ns)

signal for bucket k in deconvolution mode: $d_k = w_3 p_{k-2} + w_2 p_{k-1} + w_1 p_k$ 3-sample FIR filter

- Peak mode: read out single point from shaper
 - Used at low luminosity
 - More robust to possible timing misalignment
 - Deconvolution mode: combine signal from three readout buckets to shorten pulse duration to <50 ns (removes pile-up from subsequent events)
 - Deconvolution mode suitable for high luminosity (25 ns bunch spacing)
 - Comes at the cost of higher noise compared to peak mode

Power system

- PS system provides 1.25 and 2.5 V low voltage and between 20 and 500 V of high voltage to modules
- 356 control groups, 1944 power groups, 3888 HV channels
- Tracker can do transition from HV OFF to HV ON in about 75 seconds
- Power to tracker 36 49 kW

Power system is working reliably with low PS exchange rate and stable performance

Cooling the CMS tracker

- An efficient cooling of the silicon tracker is essential for the operation of the tracker, especially to mitigate the effects of irradiation
- Thermal screen around tracker volume ensures stable temperature of 18°C for ECAL
- C₆F₁₄ used as coolant
- Tracker is cooled by two plants:
 - 1st plant: leak rate that is close to zero
 - 2nd plant: two line closed due to high leak rate; leak rate is low when a few lines (5) are excluded
- Operational temperatures: -20°C to +15°C,
 4°C currently
- Plan is to lower temperature after the 2011/12 LHC shutdown

- Strip tracker has analog readout
- digitization only done in the Front End Drivers

Need to:

- Internally time align
 - → Synchronization of channels
- Tune laser gain
- Optimize chip parameters
- Optimize pulse shape to ideal
- •
- Determine Noise and Pedestals
 - \rightarrow For FED data reduction
- Synchronize with CMS
 - \rightarrow Align sampling with physics events

- Strip tracker has analog readout
- digitization only done in the Front End Drivers

Need to:

- Internally time align
 - \rightarrow Synchronization of channels
- Tune laser gain
- Optimize chip parameters
- Optimize pulse shape to ideal
- •
- Determine Noise and Pedestals
 - \rightarrow For FED data reduction
- Synchronize with CMS
 - \rightarrow Align sampling with physics events

- Strip tracker has analog readout
- digitization only done in the Front End Drivers

Need to:

- Internally time align
 - → Synchronization of channels
- Tune laser gain
- Optimize chip parameters
- Optimize pulse shape to ideal
- Determine Noise and Pedestals
 - \rightarrow For FED data reduction
- Synchronize with CMS
 - \rightarrow Align sampling with physics events

- Strip tracker has analog readout
- digitization only done in the Front End Drivers

Need to:

- Internally time align
 - → Synchronization of channels
- Tune laser gain
- Optimize chip parameters
- Optimize pulse shape to ideal
- Determine Noise and Pedestals
 - \rightarrow For FED data reduction
- Synchronize with CMS
 - ightarrow Align sampling with physics events

Status of Active Channels

Channels in readout

	Percentage	Modules total
TIB/TID	96.25	3540
TOB	98.33	5208
TEC-	99.13	3200
TEC+	98.81	3200
Tracker	98.1	15148

Temperature in TIB Layer 1 and 3

- TIB/TID: 92.9 % operational in 2009
- \rightarrow could be increased to 96.25 % in 2010
- → possible by inclusion of modules which rely on <u>passive</u> cooling from neighboring cooling loops for the time being

Status of Active Channels

Channels in readout – graphically

Situation of the strip tracker in June 2010

Status of Active Channels

Channels in readout – graphically

Situation of the strip tracker in June 2010

First collisions in 2009

First collisions in 2009

- CMS tracker has been operated successfully from the first collisions in November 2009
- Cautious operation during LHC machine development (also in 2010), but tracker fully on with HV at nominal operation voltages for first collisions
- Operated in peak mode for most 2009 runs

First collisions in 2009

- CMS tracker has been operated successfully from the first collisions in November 2009
- Cautious operation during LHC machine development (also in 2010), but tracker fully on with HV at nominal operation voltages for first collisions
- Operated in peak mode for most 2009 runs

Trigger Fine Timing

- first trigger fine timing performed
- starting with TOB only
- provided useful input for correction of timing for operation in deconvolution mode

Collisions in 2010

High energy collision candidate during media event 30th March

Collisions in 2010

- Following the first successful trigger fine timing, strip tracker was operated in deconvolution mode during all of 2010
- Uptime > 90 % (including inefficiencies due to time alignment runs at very low luminosities)
- Efforts ongoing to eliminate or mitigate problems
- Items:
 - DAQ software/driver crashes (only fatal at state transitions)
 - Efforts to reduce configuration time
 - PS system was improved a lot from 2009 to 2010
 - → much less time needed for HV HV OFF→ON transistions

CMS overall efficiency 91 %, including time for various timing scans

Example:

- Strip Tracker caused 8% of total CMS downtime between LHC fill 1101 and 1119
- Overall CMS efficiency in this period: 95 % 14/31

Trigger Fine Timing - Part II

- For each subdetector, one layer is put into deconvolution mode while the rest is kept in peak mode.
- Sampling point is determined per subdetector

2009 2010

small (2.5 ns) additional shift observed

Fine timing adjustments on all components provides optimal charge collection

Trigger Fine Timing - Part II

- For each subdetector, one layer is put into deconvolution mode while the rest is kept in peak mode.
- Sampling point is determined per subdetector.

small (2.5 ns) additional shift observed

Fine timing adjustments on all components provides optimal charge collection

Erik Butz. MIT 15/31

Signal-to-Noise Performance with 7 TeV Beams

Examples (all other subdetectors in backup)

- Corrected for track angle
- obtained during collisions, tracker operating in deconvolution mode

Results very good and in agreement with expectations

Detector efficiency

Hit finding efficiency

- Overall efficiency: 99.9 %
- Parts with lower efficiency are due to localized problems
- \rightarrow Can be reliably identified

Detector efficiency

Inefficiency

only about 11 out of almost 15000 active modules inefficient

Streamlining Operations

Data suppression in HV off periods

 when change of LHC beam conditions mode requires tracker to be on standby (LV on/HV off), the data is suppressed at FEDs to reduce bandwidth load

Reduction of data volume for HV off periods working successfully

Data Quality Monitoring

- Detector performance are monitored using the DQM system
 - online to give prompt feedback during data taking
 - offline to analyse the full statistics and certify data
- The full tracker reconstruction chain is monitored through histograms on
 - Status of Feds, Occupancy, Clusters, Track parameters
- Module level histograms are further processed to
 - Create summary histograms
 - Perform Quality Test
 - Produce global DQM flags

Data Quality Monitoring

Quality Monitoring of the data happening both centrally from CMS and locally from subdetector shifters/experts

- → central DQM run continuously and always in collision mode
- → local instance with more quantities monitored, higher granularity (300 k histograms)

DQM working smoothly since very first collisions with rapid feedback to data taking

DAQ Tools

- Operation very smooth, so focus moves to upgraded monitoring
- The so-called 'spy-channel' Separate data stream in parallel to normal data taking via S-LINK64

Captures full raw-data frame

- Provides complete non-zero suppressed data including error bits, etc...
- Read at low rate (max 0.3 Hz)

Erik Butz, MIT 22/ 31

DAQ Tools

Spy Channel Applications

- Calculation of noise thresholds taken during physics data-taking (no need for separate calibration runs)
- Stability of readout
- Monitoring of
 - FED hardware
 - FED zero-suppression
 - Detector efficiencies
 - •

Spy channel is a powerful tool which will provide crucial information about the low-level performance of the detector during running

Erik Butz, MIT 23/ 31

Outlook

Strip tracker is performing very well, providing high quality data for physics analysis

Specific energy loss

K⁰₅ mass plot

Outlook

Strip tracker is performing very well, providing high quality data for physics analysis

Specific energy loss

K⁰_s mass plot

Summary

- CMS silicon strips tracker has been operated successfully during 2009 and 2010, recording high quality data from the very beginning
- The Signal-to-noise ratio is constantly high and in agreement with expectations in both peak and deconvolution readout mode
- The hit finding efficiency is close to 100 %
- A thorough data quality monitoring is in place
- The power and cooling systems are working reliably
- Spy channel will provide handles to monitor and possibly further improve the performance of the system

Erik Butz, MIT 25/ 31

Outlook on Operations

- Improve monitoring of the system
 - spy channel
 - improved DAQ monitoring
- Wire bond protection being deployed
- Keep up reliability of the PS system
- Prepare for LHC long technical stop
 - lowering of temperature:
 - ightarrow poses demands on
 - cooling and
 - humidity
- ... many more
- First and most importantly:

Deliver high quality physics data

Backup

Erik Butz, MIT 28/ 31

Signal-to-Noise Performance with 7 TeV Beams

Signal-To-Noise

Inner Barrel/Disks Outer Barrel

- Corrected for track angle
- Inner Barrel and inner disk have thin sensors (320 μm) outer barrel has thick sensors (500 μm)
- obtained during collisions, tracker operating in deconvolution mode

Results very good and in agreement with expectations

29/31 Erik Butz. MIT

Signal-to-Noise Performance with 7 TeV Beams

Endcaps

TEC+ thick

TEC+ thin

TEC-thick

TEC-thin

Endcaps have both thin and thick sensors

Results completely compatible with results from barrel detectors

Erik Butz, MIT 30/31

Layout of Cooling Plan

