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3D detectors

� 3-d array of p and n electrodes that penetrate into the 
detector bulk

� Lateral depletion
� Maximum drift and depletion distance set by electrode 

spacing (<< wafer thickness)
� Reduced charge sharing due to E-field shape: higher signal 

in one pixel
� Fast collection time: reduced charge trapping 
� Reduced depletion voltage

� Technologically complex - micromachining
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Electrode fabrication:
1. ICP etching of the holes: Bosch process, 

ALCATEL 601-E
2. Holes partially filled with LPCVD poly
3. Doping with P or B
4. Holes passivated with TEOS SiO 2

� Columns etched from opposite sides of 
substrate and don't pass through full thickness

� All fabrication done in-house
� ICP is a reliable and repeatable process (many 

successful runs)

Double-sided 3D at CNM

Hole aspect ratio 25:1 
10µm diameter, 250µm deep 
P- and N-type substrates, 285µm thick

Devices designed by Glasgow Uni&CNM, fabricated at CNM
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3D strip detectors
Leakage current of p-type 3D strip detector

3D detectors are mainly a candidate for the sLHC pixel layers, but it is still interesting to study 3D strip detectors because testing is much 
easier!

Before irradiation, T = 20ºC

Backside biased, strip and guard ring grounded

� VFD ~ 40V, I = 40–120 pA/column

� Only 2 detectors, of 19 tested, bad (not shown)

� Breakdown at less than 5V (catastrophic defect?)

� All others work far beyond full depletion

50 strips
DC coupled
50 electrodes/strip
4mm long strips 
n+ strips/p- bulk/p+ back contact

p-stop around
each n-hole

3D guard ring

Common p-stop 
surrounding
sensor area

80µm80µm
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Irradiation and annealing

� P-type strip detector irradiated in FZK Karlsruhe with 26 MeV protons to 1E16 1MeV neq/cm2
� Accelerated annealing at 80ºC

� Acceleration factor of 7400 for the reverse annealing with respect to RT
� Tested at -10ºC in probe station

Two competing effects in I-V curves: 
� Annealing of leakage current at low V. 
� From ~200V: Charge multiplication? More pronunced and earlier for longer annealing time

C(V) after 4 min annealing
Lat. dep. ~90V (10V before irr)
C(V) after 4 min annealing
Lat. dep. ~90V (10V before irr)

Annealing time

Charge multiplication?

Annealing of leakage current

Annealing time

Charge multiplication?

Annealing of leakage current
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ALIBAVA lab tests: Collected charge for irradiated devices

� ALIBAVA system: Beetle front end (LHCb), LHC speed bi-polar amplifier (25ns peaking 
time), full analogue readout

� Detectors glued to ceramic base boards with RC pitch adaptors from VTT/Helsinki Institute 
of Physics

� 150V except non-irradiated sample, 18V

Electron collecting strip detectors, Sr-90 source, -10º to -15º

Calibration with planar strip detector: n- bulk 300 µ m thick, 1 cm long AC coupled p+ readout strips (hole collection), 80 µm pitch
Plateau value taken as full charge collection in planar device
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High bias operation

� Increased CCE for high fluences > 5×1015, close to 100% CCE for 1016 neq/cm2

� More than 100% CCE for fluences 0.5 to 2×1015 neq/cm2!
� Strong charge multiplication

� Also observed in heavily irradiated planar devices with kV bias
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Bias voltage applied maximum possible before excess current or noise,
typically 250 to 350V

For comparison with planar devices: I. Mandic et al., “Measurement of anomalously high charge collection efficiency in n+p strip 
detectors irradiated by up to 1016 neq/cm2” Nucl. Instr. Meth. A 603(3), 2009

100% CCE
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Strip testbeam work

� Charge collected in testbeam is very close to lab tests 
� Irradiated devices: increasing signal above ~150 V. Strong charge multiplication seen. 
� For 1015: ~100% CCE at 150V, ~140% CCE at 200V, ~200% CCE at 220V

CNM 3D p-type strip detectors tested with Silicon Beam Telescopewith CMS readout (APV25 
front end, analogue readout) and 50 ns shaping at CERN SPS (225GeV pions), -15ºC.

Landau MPV
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Strip testbeam work – comparison with planar

� Irradiated planar sensors far from being depleted at 500V
� Noise level for the planar sensors is ≈ 0.1 fC

� At highest fluence just enough signal left for measurements of planar sensors, SNR≈10

Comparison with Hamamatsu 
(HPK) planar strip sensors 
tested in same test beam, same 
readout, at 500V

Data normalised to 320µm  
thickness

(non-irr) 100%
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Signal to noise/signal to threshold

� Need high S/N ratio but for binary systems (e.g. ATLAS) S/T even more important 
criterion
� Threshold required to keep the noise occupancy below a certain limit must be 

increased strongly when charge multiplication is present

� Test beam had large common mode that could not be reduced completely
� Noise measurements performed in the lab with Beetle-based ALIBAVA readout

� Charge multiplication beneficial for S/T and S/N up to certain point

2x1015 1MeV neq/cm2

-26ºC
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Medipix2 3D detectors � Medipix and Timepix electronics
� 65k single-photon counting pixel array
� 55 x 55 µm square pixels
� Electron or hole collection 
� 100ns shaping time
� Counting device with counter on each pixel

� Each photon hit is compared to a pair of 
adjustable thresholds

� Pixel counts no. of accepted hits during 
acquisition time

� Timepix allows time over threshold to be 
recorded

� Only one photon per frame is recorded in 
this mode

High resistivity
Semiconductor

Pixel readout

Electronics chip

Solder bump

PN N

Double sided 3D sensors compatible with standard pixel read out electronics. High voltage on the back of the pixels like in planar devices.
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X-ray beamline at Diamond

� B16 test beamline at the Diamond Synchrotron
� Monochromatic X-ray beam of 14.5keV
� Microfocussed beam size FWHM were 

measured as:
� 4.5±0.3 µm in x 
� 6.7±0.3 µm in y

� Six degrees of freedom, 0.1µm translational and 
5µrad rotational

� Alignment of 0.3º in x and 0.9º in y

Compound refractive lens

Beam

Beam 3D detector

Detector substrate raster scanned relative to the b eam
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Pixel maps and X-ray detection efficiencies (Medipix 
mode – counts above threshold)

� 77.5µm square pixel maps 
(55µm pixel), background 
subtracted, interpolated and 
normalised to the highest 
count.

� 2.5µm steps
� THL ~ 50% of beam energy

*efficiencies at the corners due to 
electrodes structures and charge 
sharing
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Charge Sharing
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MIP beam test of 3D Medipix2

� Secondary 120 GeV pion beam from SPS
� 4 Timepix, 2 Medipix planes in telescope
� DUT: double sided 3D N-type sensor from CNM/Glasgow, 

Timepix mode (Time Over Threshold)
� Expected track extrapolation error < 3 µm

Medipix & LHCb

Pion beam
Individual pion tracks

telescope DUT
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Charge efficiency

7 ADC 30 ADC 7 ADC
shared
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1-12 show ADC counts (TOT) in pixel at positions 
along cross section from center (junction) to the 
corners (ohmic, shared)
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Peaks seen at ~7 and ~30 ADC counts

Measurements at 0º angle (normal incidence)
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Detection efficiency with angle (preliminary)
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� Absolute efficiency (Medipix mode, counts above threshold)
� Threshold just above noise level
� Efficient if hit in 3x3 pixel array around intercept point

For a detailed analysis of the Medipix Diamond and CERN testbeams see G. Stewart’s poster “3D 
Detector Analysis from testbeams at the Diamond Synchrotron and CERN SPS”

For simulations of charge multiplication: J.P Balbuena, “Simulation of charge multiplication in 3D 
detectors”
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Conclusions

3D irradiated strip sensors:
� Evidence of charge multiplication in testbeam and lab tests 
� Both signal to noise and signal to threshold ratio can be increased up to a certain 

point, but they decrease with very strong multiplication
� Charge multiplication could possibly improve the performance of irradiated 3D 

detectors, but more experiments and simulations needed.

3D Medipix2/Timepix
� 3D detector shows less charge sharing than the planar equivalent
� Charge collection observed from both inter-column and column-back plane regions
� Charge loss inside the electrodes 
� As the detector is rotated the signal equalises across the detector 
� Trade-off between efficiency and charge sharing/radiation hardness in 3D devices

� Double sided 3D suitable for pixels with short edges (~10um) -> tiling
� Technology ready for small-medium production (e.g. IBL)
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Future 3D work at IMB-CNM

� New run of 3D-Medipix3, standard (2 cm2) and quad area (16 cm2). Collaboration with 
Diamond Light Source and Glasgow Uni (1)

� Irradiation and test beams with Medipix (Timepix) detectors for LHCb VELO upgrade.
� ATLAS pixels FE-I3 and new FE-I4 fabrication, irradiation and test beam. For the IBL, in the 

framework of the ATLAS 3D Collaboration (http://test-3dsensor.web.cern.ch/test-
3dsensor/). (2)

� Design and fabrication of CMS pixels: single chips and 8x2 module. In collaboration with 
PSI. (3)

� Design and fabrication of 3D strip detectors for TOTEM (CERN) (4)

1 2 3 4
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