Charge Multiplication Properties in Highly-Irradiated Epitaxial Silicon Detectors

<u>Jörn Lange¹</u>, Julian Becker¹, Eckhart Fretwurst¹, Robert Klanner¹, Gregor Kramberger², Gunnar Lindström¹, Igor Mandić²

¹ University of Hamburg

² Jožef Stefan Institute, Ljubljana

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung Vertex 2010, Loch Lomond, 8 June 2010

In the framework of the CERN RD50 Collaboration

Introduction

- Trapping: most limiting factor at S-LHC fluences (≈ 10¹⁶ cm⁻²)
 ⇒ Degradation of Charge Collection Efficiency (CCE)
- But at high fluences and voltages: CCE>1
 ⇒ Trapping overcompensated by Charge Multiplication (CM)
- Can CM be used for highly damaged S-LHC detectors?
 - \Rightarrow Detailed understanding of the formation and properties of CM in irradiated sensors needed

UΗ

Investigated Material

- Epitaxial (Epi) Si on Cz substrate: candidate for superior radiation hardness
 - Device Engineering: Thin (25 150 µm)
 - Defect Engineering:
 - High O concentration in standard material (ST): <[O]>= (4.5 9.3) x 10¹⁶ cm⁻³
 - Further O enrichment possible (DO):
 - \Rightarrow After irradiation with charged hadrons:
 - N_{eff} increase at high fluences due to predominant donor introduction
 - n-type: no space charge sign inversion!
- n-type
- 75 μm, 100 μm, 150 μm thickness
- Pad detectors produced by CiS: 5 x 5 mm² and 2.5 x 2.5 mm²
- 24 GeV/c proton irradiation (CERN PS) up to $\Phi_{eq}=10^{16}$ cm⁻²
- 30 min at 80 C annealing

 $<[0]>= (1.4 - 6.0) \times 10^{17} \text{ cm}^{-3}$

Experimental Methods

- Transient Current Technique, TCT (Hamburg)
 - Front illumination ($\approx 10^6$ e-h pairs deposited)
 - Current-sensitive amplifier
 - Integral of current pulse=collected charge Q
 - Charge collection efficiency obtained by normalising Q wrt. unirradiated diode: $CCE = \frac{Q}{Q}$
 - Measured at -10 C
 - Radiation with different penetration:
 - 5.8 MeV α-particles, optional absorbers
 - 670, 830, 1060 nm laser light
- ⁹⁰Sr-beta setup (Ljubljana)
 - MIP-like particles
 - Charge-sensitive amplifier, 25 ns shaping time
 - Measured at -29 C

UΗ

Development and Localisation of the CM Region

0H 8 June 2010, 1

Linearity of Measured Charge

⇒ Proportional mode not Geiger mode

 \Rightarrow E too small for contribution of holes to impact ionisation

UН

Spatial Uniformity and Long-Term Stability

Uniformity

 x-y-scan with 660 nm laser: beam spot σ_{beam}=20 μm, 200 μm step width

 \Rightarrow very uniform (~0.5 - 1 % standard deviation)

Stability

- Repeated measurements at constant voltage, temperature ⇒ stable in time
- Limiting factor at high voltages: micro discharges
 - \Rightarrow improvement of device technology desirable

UН

闬

Collected Charge with ⁹⁰Sr β-Setup

- At least 2500 single waveforms taken
 - Most Probable Value (MPV) determined by Landau-Gauss fit to spectrum: not possible for highly-irradiated diodes due to noise
 - Mean determined by averaging waveforms: also for low Signal-to-Noise Ratio (SNR) possible
- Unirradiated diodes:
 - Collected charge proportional to thickness
 - MPV: 80 e-h/µm
 - Mean: 97 e-h/µm
 - MPV/Mean $\approx 0.75 0.85$
 - Noise ≈ 2000-3300 e (pad diodes!) depending on size, thickness

UН

闬

Charge for Different Materials and Thicknesses at Highest Fluence

Q(75µm)>Q(100µm)>Q(150µm)

due to higher E-field and weighting field in thin diodes \Rightarrow less trapping effects, more CM

 Q(DO)<Q(ST) below the CM regime, Q(DO)>Q(ST) in the CM regime

due to higher donor introduction rate in DO

- \Rightarrow smaller depleted region at low voltages; higher E_{max} \rightarrow higher CM
- For all materials/thicknesses:
 - More than 9000 e possible at high voltages
 - More than 5000 e at 500 V

(mean values)

Ш

Current and Noise

- CM expected to increase signal, current and noise
- Current and noise increase strongly
- Same material and thickness dependence as signal
 - Larger for thinner diodes
 - Larger for DO

$$\sigma_{\text{noise}} = \sqrt{\sigma_{\text{shot}}^2 \left(M' \right) + \sigma_{\text{noise}}^2}$$

UН

闬

Signal-to-Noise Ratio

$$SNR = \frac{Q}{\sigma_{noise}} = \frac{MQ_{M=1}}{\sqrt{M'^2 F' \sigma_{shot,M'=1}^2 + \sigma_{noise}^2}}$$

- \Rightarrow Depends on relative size of different terms whether CM can improve SNR
- TCT setup:
 - σ'_{noise} large
 - \Rightarrow SNR improves up to 900 V

 β -setup:

 σ'_{noise} smaller

 $\Rightarrow \sigma_{shot} (M') \text{ dominates early and} \\ \text{increases faster than signal} \\ \Rightarrow SNR \text{ decreases after maximum} \\ \text{at } 300 - 500 \text{ V} \\ \end{cases}$

- What about pixels?
 - Lower I
 - Threshold >> noise (unirr.)
 ⇒ noise increase tolerable?

UН

Width of Charge Spectrum

EPI-ST 100 µm **Relative Width of Signal Spectrum** 1 6.0 م^{sb} / Mean 8.0 م After noise subtraction: . 2 noise 0.7 10¹⁶ cm⁻² 0.6 0.5 0.4 0.3 0.2 unirradiated 0.1 0 0 200 400 600 800 1000 Voltage [V]

- Fluctuations due to CM might increase spectrum width
- No significant increase of noise-corrected relative width with voltage
 - \Rightarrow no significant impact of CM fluctuations observed

υн

Summary

- Properties of charge multiplication in proton-irradiated EPI diodes investigated with
 - TCT (laser light, α-particles)
 - ${}^{90}Sr \beta$ -setup with charge-sensitive amplifier, 25 ns shaper
- Thin CM region at the front side
- Proportional mode
- Uniform
- Stable
- β -setup : strong noise increase \Rightarrow SNR decreases at high voltages
- No significant increase of noise-corrected relative width of charge spectrum
 ⇒ no impact of CM fluctuations

High signals at S-LHC fluences possible!

Can noise increase be controlled or tolerated in segmented detectors?

BACKUP SLIDES

Depletion Voltage (from CV at 10 kHz)

Stable Damage:

8 June 2010, Vertex 2010, Loch Lomond

闬

MTCT Laser-TCT Setup

Laser -TCT Setup

Noise and SNR (TCT with Laser)

υн

Width of Charge Spectrum

- Fluctuations in the CM process might increase spectrum width: $\sigma_{sp} = M\sqrt{F}\sigma_{sp,M=1}$
- Laser light (≈10⁶ e-h): Relative width of charge spectrum not increasing ⇒ no fluctuations in CM process
- α-particles: Strong increase of relative width due to fluctuating fraction of charge deposited in the CM region

90Sr Beta Setup

Ljubljana setup for pad diodes:

- Charge-sensitive preamplifier (Ortec 142B)
 + shaper (25 ns shaping time)
- Scintillator → high purity trigger
 ⇒ signals with SNR<1 measurable
- T between -25°C and -29°C
- Calibrated with ²⁴¹Am, cross-checked with 300 µm diode
- Single waveforms taken with oscilloscope
 - Averaged waveform: Peak determination possible even for low SNR

 \Rightarrow for highly-irradiated diodes mean is considered instead of most probable value (MPV)

 Micro discharges in certain samples at high voltages (independent of fluence)

UΗ

Collected Charge for Different Fluences

 Charge multiplication at high fluences and voltages

Current and Noise

- CM expected to increase signal, current and noise
- Current and noise increase strongly
- Same material and thickness dependence as signal
 - Larger for thinner diodes
 - Larger for DO

UΗ

曲

Width of Charge Spectrum

- Fluctuations due to CM might increase spectrum width
- No significant increase of noise-corrected relative width with voltage

 \Rightarrow no significant impact of CM fluctuations

CCE Dependence on Annealing

In the CM regime:

- Maximum of CCE at 8 min
- CCE annealing curve shows the same behaviour as the one of U_{dep}, N_{eff}
 higher N_{eff} → higher E_{max} → higher CM